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ABSTRACT: Fuel cells belong to an avant-garde technology family for a wide variety of 

applications including micro-power, transportation power, stationary power for buildings and other 

distributed generation applications. The first objective of this contribution is to find a suitable 

reduced model of a Solid Oxide Fuel Cell (SOFC). The derived reduced model is then used  

to design a state estimator. In the first step, the distributed model of the SOFC that is derived using  

the first principle balance equations is solved by the method of lines. Since this model is too complex 

and sluggish for real-time applications, a representation of this model with lower number of states 

and good accuracy is needed. Karhunen-Loève-Galerkin (KLG) procedure is used to develop such  

a reduced model. 
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INTRODUCTION 

Fuel Cells are in limelight nowadays because of their 

advantages over fossil fuels and traditional methods of 

power generation. High efficiency, environmental friendliness 

and portability are among those advantages [1,2]. In fuel 

cells like every other process, using the model for design 

and control leads to better efficiency and optimum use  

of capacities. Since fuel cell models are a mix of complicated 

algebraic equations and a set of PDE’s and such models 

are too complex to be used easily, currently fuel cells 

operate based on empirical knowledge. And it means that  

 

 

 

potential of fuel cells are not fully exploited. This contribution 

aims to remove the obstacles lie in using such model.  

A reduced model will be developed which needs much 

less calculation time and reproduces the exact model data 

with high reliability. 

Distributed Parameter Systems (DPS) have been studied 

for model reduction. Christofides et al. studied  

a particular class of DPS that exhibits two time-scale 

behavior (fast and slow), [3]. There it was shown that  

the infinite order model can be reduced to a low order finite  

 

 

 

* To whom correspondence should be addressed. 

+ E-mail: pishvaie@sharif.edu 

1021-9986/13/3/91       15/$/3.50 



Iran. J. Chem. Chem. Eng. Mirabi E. et al. Vol. 32, No. 3, 2013 

��

92 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1: Schematic of an individual fuel cell [11]. 

 

model that captures the dominant (slow) behavior. 

Another reduction method is using the concept of 

Approximate Inertial Manifold (AIM) which is described 

in [4]. A summary of contributions of Christofides on 

nonlinear model reduction of DPS can be found in [5]. 

When exact description of the DPS is not available, 

input-output data can be used to develop a low-order 

model. Gay & Ray [6] proposed such an approach using 

singular function theory. The input and output data  

are approximated using spline functions which will be then 

used to find the “kernel” function that links the input  

to the output. 

Another data-driven approach is to use Karhunen-

Loève decomposition, [7]. The method was first used  

to reproduce stochastic field data. But it can be used  

to generate eigenfunctions specific to the problems. These 

Empirical EigenFunctions (EEF’s) coupled with Galerkin 

method will reduce every linear and nonlinear DPS  

to a low order model. Park has used this procedure 

(KLG) in several distributed parameter systems with 

complex geometry successfully [8].  

Mangold et al. have used the same procedure  

to develop a reduced model for a two-dimensional Molten 

Carbonate Fuel Cell (MCFC) system, [9]. They have also 

used the reduced model for parameter and state 

estimation of the original distributed model, [10]. 

This contribution aims to apply the same technique  

on a different type of fuel cell. The paper is organized  

as follows. In next section working principle of a solid oxide 

fuel cell will be described briefly followed by modeling 

and simplifying assumptions. Other section solves  

the distributed model by the method of lines. Then  

the problem of such methods in handling the DPS and 

necessity of lower order models are discussed. 

Explanation of the KLG procedure for model reduction 

and its application to the distributed SOFC model  

are introduced in "Model Reduction" section. It is followed 

by testing the reliability and calculation time of the 

reduced model. In Designing section an observer based 

on the reduced model will be designed and the final 

section summarizes the findings. 

 

THEORITICAL  SECTION 

Working principles of an SOFC 

Solid Oxide Fuel Cell (SOFC) is made of two porous 

electrodes, an electrolyte layer between them and two gas 

channels outside of the electrodes. Fig. 1 shows a schematic 

representation of an individual fuel cell with 

reactant/product gases and ion flow directions. Fuel which is 

usually a mixture of natural gas (methane) and vapor enters 

the anode channel. There occur two reactions: Methane 

reforming and Water Gas Shift Reaction (WGSR). 

Hydrogen which is produced in fuel channel uses 

oxygen ions and get oxidized and let out free electrons.  

In cathode, oxygen molecules convert to oxygen ions  

by consuming free electrons. The oxide ions then pass through 

electrolyte to reach anode. The electrochemical reaction  

can be briefly shown by reaction number 3 in Table 1.  

Free electrons transfer through a wire that connects anode  

to cathode and hereby electricity is produced. 

 

One dimensional SOFC model 

Distributed model of SOFC which is used in this 

study, with little modifications is mainly like [12]. 

Velocities of gases in both channels (fuel and air)  

are assumed to be constant. Therefore, momentum balance 

equations are omitted. Mass balance leads to the 

following partial differential equation. 

( )j ijij

ik k
jk

u CC 1
v R

t x H

∂∂
= − +

∂ ∂
�                                   (1) 

Where parameters are defined as: 

Cij (mol/m3)     Concentration of component i in channel j 

uj (m/s)                                 Velocity of gases in channel j 
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Table 1: Chemical reactions taking place in Cell. 

Reaction No. Reaction Name Chemical Equation 

1 Methane Reforming CH4 + H2O → CO + 3H2 

2 WGSR CO + H2O ↔ CO2 + H2 

3 H2 Oxidation H2 + (1/2)O2 → H2O 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Longitudinal cutting of the cell; Grid points show 

“Mesh-centered” approach in discretization. 

 

Rk (mol/s.m2)                       Surface rate of reaction No. k 

νik                      Stoichiometric coefficient of component i  

                               in reaction No. k (minus for reactants) 

Hj (m)                                                   Height of channel j 

 

Writing the above PDE for 5 components in fuel 

channel (CH4, H2O, CO, H2 and CO2) and 2 components 

in air channel (O2 and N2) leads to 7 PDE’s. Energy 

balance for fuel, air, interconnect and set of electrolyte 

and two electrodes (which is called PEN, Positive 

electrode; Electrolyte; Negative electrode) gives another 

4 partial differential equations. These 11 PDE’s with 

electrochemical model (which is a set of complicated 

algebraic equations) constitute one dimensional model of 

a solid oxide fuel cell. (Complete set of model equations 

with parameters and operating condition can be found  

at the appendix) 

 

Solving the distributed model by method of lines 

In “Method Of Lines (MOL)” spatial derivatives  

are replaced by finite difference formulas. The accuracy  

of the resulting dynamic model depends on the number  

of grid points. “Mesh centered” approach is used  

in discretization, (Fig. 2). N=10, 20 and 30 were tested 

for the number of grid points. Solving the model in 

steady state and dynamic condition cleared that choosing 

N=10 leads to poor accuracy meanwhile N=20 and N=30 

are both acceptable depending on the level of accuracy 

required. 

In this model we have 11 PDE’s and hence  

11 distributed variables (7 Concentrations and  

4 Temperatures). If we take N=20 (the number of grid 

points for each distributed variable) by method of lines, 

we’ll have a dynamic models with 220 states. Similarly 

N=30 leads to a set of 330 ODEs. These models consume 

a lot of calculation time and are not suitable for control 

purposes or other real-time applications. Therefore  

a reduced model that accurately imitates the behavior of 

the system and needs less calculation time is desirable. 

This is one of the objectives of this paper. 

Although the dynamic model which is obtained  

by the method of lines has too many states and is sluggish,  

it is very accurate and therefore it will be used as a reference 

to assess the accuracy of the derived reduced model.  

As a consequence, the expression “exact model” will be used 

instead of “model obtained by the method of lines” 

afterwards throughout this article. 

 

Model reduction 

KLG procedure 

Karhunen-Loève decomposition which was first used 

to reproduce stochastic field data [13], here will be 

described briefly for reproducing data in a 2-dimensional 

space. It can easily be generalized for n-dimensional data. 

We select N arbitrary irregularly shaped numerical 

functions ( ){ }n x, yυ which we’ll call them “snapshots” 

afterwards. 

( ){ }n x, y n 1, 2,..., Nυ =                                    (2) 

The objective is to find the most typical or 

characteristic structure of these snapshots. To do this,  

we will start by defining C matrix. 



Iran. J. Chem. Chem. Eng. Mirabi E. et al. Vol. 32, No. 3, 2013 

��

94 

( ) ( )nk n k

1
c x, y x, y d

N
Ω

= υ υ Ω�                                     (3) 

Ω is the domain where functions υn(x,y) are defined 

on it. 

We will calculate eigenvalues and eigenvectors  

of the matrix C, and then we’ll find eigenfunction ϕ(x,y) 

using eigenvectors. 

Cα=λα                                                                            (4) 

( ) ( )k k

k

x, y x, yϕ = α υ�                                                (5) 

Target function ϕ(x,y) which will be called 

eigenfunctions afterwards, are assumed to be linear 

combinations of the snapshots. 

If we sort the eigenvalues λ1 > λ2 > … > λN and  

the corresponding eigenfunctions ϕ1, ϕ2, …, ϕN in order 

of magnitude of the eigenvalues, then the eigenfunction 

ϕ1 corresponding to the largest eigenvalue (λ1) will turn 

out to be the most typical structure of the members of  

the snapshots {υn} and the eigenfunction ϕ2 with the next largest 

eigenvalue (λ2) is the next typical structure and so forth. 

For different eigenvalues, it can be proven that 

Empirical EigenFunction (EEF’s) are orthogonal. 

i jd 0 if i j

Ω

ϕ ϕ Ω = ≠�                                   (6) 

A more complete description of the method can be 

found in [14]. 

Here we use Karhunen-Loève decomposition to find 

basis functions in solving partial differential equations. 

Snapshots will be the transient response of the exact 

model, frozen at some specific moments and the resulting 

empirical eigenfunctions are taken as basis functions  

in Galerkin method. These problem-specific basis functions 

will be used in Galerkin method which is one of  

the methods of weighted residual to solve differential 

equations approximately. The combination of Galerkin 

method and Karhunen-Loève decomposition (KLG 

procedure) will reduce linear and nonlinear distributed 

systems to low-order lumped systems. The applicability 

of this procedure will not be limited by geometrical 

complexity of the system. 

 

Formulation of the reduced model 

Let’s assume that z is a distributed variable that 

satisfies the following partial differential equation. 

z z
b(z) c(z)

t x

∂ ∂
= +

∂ ∂
                                                        (7) 

KLG procedure starts with homogenizing the 

boundary condition (b.c.) of z and then approximating  

it as a limited sum of products of eigenfunctions and 

amplitude temporal functions. 

( ) ( )z x, t U x, t f (t)W(x)= +                                          (8) 

U satisfies the homogeneous b.c. and W satisfies  

the inhomogeneous b.c. 

en

app
i i

i 1

U a (t) (x)
=

= ϕ�                                                      (9) 

app
i iz a fW= ϕ +�                                                      (10) 

If zapp is substituted from Eq. (10) into Eq. (7) it doesn’t 

exactly satisfy the PDE and a residual (Res) will remain. 

��� �
�����

�	

 ���������                                             (11) 

app
i

i z z

da df
Res W rhs

dt dt =
= ϕ + −�                              (12) 

In Eq. (11), rhs refers to right hand side of Eq. (7). 

Galerkin method of weighted residual requires that 

weighted integral of residual (with weighting function ϕi  

be zero. [15] 

( )
L

i e
0

Res dx 0 i 1 nϕ = =� �                                (13) 

ne is the number of eigenfunctions that corresponds  

to the distributed variable “z”. Later we’ll discuss how ne 

is determined. The integration above leads to ne ordinary 

differential equations for temporal amplitude functions ai, 

which will construct the reduced model. 

L L
i app

i i
0 0

da df
rhs dx W dx

dt dt
= ϕ − ϕ� �                             (14) 

( )
da

g a
dt

=                                                                     (15) 

Hereby the partial differential Eq. 7 is replaced with 

ne ordinary differential equations (Eq. 15) and this is  

the derived reduced model. Initial conditions are calculated 

as follows: 
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Table�2: Characteristics of the derived reduced model. 

Sum of normalized eigenvalues No. of snapshots taken No. of eigenfunctions Distributed Variable Var. No. 

0.999991 68 4 ���� 1 

0.999999 80 5 ���� 2 

0.999966 80 4 ��� 3 

0.999998 88 5 ��� 4 

0.999992 90 4 ���� 5 

1 35 2 ��� 6 

0.999999 15 2 ��� 7 

0.999999 85 5 �� 8 

0.999999 85 5 �� 9 

0.999999 90 4 ���� 10 

0.999999 90 4 �� 11 

 

( )
L

i
00

i L
2
i

0

U x,0 dx
a

dx

ϕ
=

ϕ

�

�
                                                  (16) 

If the spatial derivative in PDE (7) was of second 

order, it would have 2 boundary conditions and then 

boundary conditions could be homogenized (in the most 

general way) by adding a term to Eq. (8). 

1 1 2 2z U f W f W= + +                                                     (17) 

U again satisfies the homogeneous b.c. and W1 and 

W2 satisfy the inhomogeneous b.c. 

 

Calculation of the empirical eigenfunctions 

Since there is no systematic trend in selection of  

the snapshots in nonlinear systems, their selection should be 

done carefully. It can be proven that if snapshots  

are linearly dependant, C matrix will become singular. 

Singularity of C matrix will make the distribution  

of eigenvalues abnormal. This unfavorable distribution 

affects eigenvectors and eigenfunctions in turn. Therefore 

a possible criterion for selection of snapshots can be 

condition number. Another possible criterion that  

is imposed is the performance of the reduced model. 

Snapshots are due to transfer the pattern to 

eigenfunctions. If we select more diverse snapshots, 

eigenfunctions recognize the structure of the distributed 

variable better. Table 2 shows the characteristics of  

the derived reduced model. Number of eigenfunctions and 

number of snapshots are determined for each distributed 

variable (7 Concentrations and 4 Temperatures). 

Number of eigenfunctions is selected based on the 

performance of the reduced model. For variables with 

more complex differential equation, more eigenfunctions 

are needed to cover all the dynamic modes of that 

distributed variable. 

Since i-th eigenvalue shows how i-th eigenfunction 

represents snapshots, sum of normalized eigenvalues 

gives us an index of how well snapshots are covered. 

Figs. 3-13 show calculated eigenfunctions for each 

distributed variable. First eigenfunctions which were  

due to extract the most typical structure of a set of snapshots 

for each distributed variable have turned out to be like 

steady state profile of variables. Next eigenfunctions 

cover the dynamic modes of each variable. 

Since every PDE is replaced by ne ODE’s (Eq. (15)), 

the order of reduced model is equal to sum of number of 

eigenfunctions which is 44 here. 

 

Reliability of the reduced model 

If we define an error index like this: 

exact KLG
i i

i exact
i

x x
IARE dt

x

� �−
� �=
� �
� �
�                                     (18) 

Where: 

i                                                                     Node number 

KLG                              Reduced model (which is derived  

                                                   based on KLG algorithm) 

exact                             Exact model (model developed by  

                                                                  method of lines) 

x                                    any of the 11 distributed variables 
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Fig. 3: Empirical Eigenfunctions associated with 1st 

distributed variable (CCH4) (Concentration of Methane in the 

fuel channel). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Empirical Eigenfunctions associated with 2nd 

distributed variable (CH2O) (Concentration of steam in the fuel 

channel). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Empirical Eigenfunctions associated with 3rd 

distributed variable (CCO) (Concentration of carbon monoxide 

in the fuel channel). 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6: Empirical Eigenfunctions associated with 4th 

distributed variable (CH2) (Concentration of Hydrogen in the 

fuel channel). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Empirical Eigenfunctions associated with 5th 

distributed variable (CCO2) (Concentration of Carbon dioxide 

in the fuel channel). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Empirical Eigenfunctions associated with 6th 

distributed variable (CO2) (Concentration of Oxygen in the Air 

channel). 
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Fig. 9: Empirical Eigenfunctions associated with 7th 

distributed variable (CN2) (Concentration of Nitrogen in the 

Air channel). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Empirical Eigenfunctions associated with 8th 

distributed variable (Tf ) (Temperature of gases in the fuel 

channel). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11: Empirical Eigenfunctions associated with 9th 

distributed variable (Ta) (Temperature of gases in the air 

channel). 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 12: Empirical Eigenfunctions associated with 10th 

distributed variable (TPEN ) (PEN temperature). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13: Empirical Eigenfunctions associated with 11th 

distributed variable (TI ) (Interconnect temperature). 

 

Then for every distributed variable we can find  

2 nodes that have best and worst performance based on the 

index (18). Figs. 14-24 compare reduced model and exact 

model for these nodes when system is excited with 

changes in current density. 

Figures say that reduced model is of good accuracy. 

Moreover accurate-enough results of the reduced model 

ceased the process of improving it. If more accuracy  

is needed for one variable or for the whole model,  

it can be achieved by modifying eigenfunctions or  

the number of eigenfunctions. 

 

Comparing the calculation time 

To find out how much the reduced model is faster 

than the exact model, they are excited by different inputs 

and their simulation times are compared. 
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Fig. 14: System is excited with changes in current density and accuracy of reduced model is being assessed. Left figure shows  

the best and the right one shows worst performance of the 1st distributed variable based on index (18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15: System is excited with changes in current density and accuracy of reduced model is being assessed. Left figure shows  

the best and the right one shows worst performance of the 2nd distributed variable based on index (18) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16: System is excited with changes in current density and accuracy of reduced model is being assessed. Left figure shows  

the best and the right one shows worst performance of the 3rd distributed variable based on index (18). 
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Fig. 17: System is excited with changes in current density and accuracy of reduced model is being assessed. Left figure shows  

the best and the right one shows worst performance of the 4th distributed variable based on index (18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18: System is excited with changes in current density and accuracy of reduced model is being assessed. Left figure shows  

the best and the right one shows worst performance of the 5th distributed variable based on index (18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19: System is excited with changes in current density and accuracy of reduced model is being assessed. Left figure shows  

the best and the right one shows worst performance of the 6th distributed variable based on index (18). 
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Fig. 20: System is excited with changes in current density and accuracy of re duced model is being assessed. Left figure shows  

the best and the right one shows worst performance of the 7th distributed variable based on index (18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21: System is excited with changes in current density and accuracy of reduced model is being assessed.  

Left figure shows the best and the right one shows worst performance of the 8th distributed variable based on index (18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 22: System is excited with changes in current density and accuracy of reduced model is being assessed.  

Left figure shows the best and the right one shows worst performance of the 9th distributed variable based on index (18). 
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Fig. 23: System is excited with changes in current density and accuracy of reduced model is being assessed. Left figure shows  

the best and the right one shows worst performance of the 10th distributed variable based on index (18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 24: System is excited with changes in current density and accuracy of reduced model is being assessed. Left figure shows  

the best and the right one shows worst performance of the 11th distributed variable based on index (18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 25: Step changes in current density. 

In the first case we applied changes in current density 

like Fig. 25. The second case is associated with 50% 

increase in concentration of Methane at the fuel channel 

input, and in the third case 100% increase in fuel velocity 

(Step change) is considered. 

Table 3 compares the simulation time for these  

3 cases. Cases 1 to 3 show 66%, 84% and 65% decrease 

in calculation time. The reduced model has 44 states and 

exact model has 330; and if we compare the calculation 

time by the number of states, it should have been reduced 

87% but there are numerical integrations (Eq. (14)) which 

make the reduced model more complicated than first 

thought. 
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Table 3: Comparing the calculation time of reduced model 

and exact model for three different changes in the system. 

Simulation time (sec) KLG�� MOL* 

case 1�� 344�� 1014��

case 2�� 252�� 1530��

case 3�� 293�� 845��

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 26: Block diagram of observer for the SOFC. 

 

From these 3 cases we can conclude that calculation 

time is reduced considerably but this reduction could be 

more significant if geometry of the system was more 

complex or the model was 2 or 3 dimensional. 

 

Designing an observer based on the reduced model 

To show one of the applications of the reduced model, 

it is used to estimate the states of the exact model. 

Structure of the observer is based on the reduced model 

and it is modified by a “correction term” like 

“Luenberger-like observer”. 

Fig.26 shows the block diagram of the observer for 

the SOFC system. 

If reduced model is shown by  

( )x f x,u=�                                                                    (19) 

( )y g x,u=                                                                    (19) 

Observer has the following structure. 

( ) ( )ˆf , u K y yξ = ξ + −�                                                  (21) 

Measured values (y in eq. 21) are provided by the 

exact model. 

Since reduced model does not exactly reproduce exact 

model data, we cannot expect estimation error  

to converge to zero. The reduced model is a complicated 

nonlinear system and it is almost impossible to write  

it in an analytical form, therefore Lie algebra or coordinate 

transformation cannot be used to calculate observer gain 

matrix. Pole placement and Kalman filter are two linear 

methods which are used instead. Even if the system  

is not noise-corrupted we can still use Kalman filter. 

To find out if the system is observable, we need  

to know which quantities are being measured. We take 

outlet temperature of fuel and air channels and average 

voltage as the 3 measured quantities. Linearization and 

calculation of A & C matrices in 2 different operating 

points reveals that the system is not observable. However 

it is detectable and therefore an observer can be designed 

for this system. 

A linear state space equation (A & C) is detectable  

if there exists a matrix L so that eigenvalues of (A-LC) 

are negative definite [16]. 

Eigenvalues of matrix A (dynamic matrix of 

linearized system) are found to be all negative therefore 

even a zero gain matrix will make the linearized system 

detectable. Therefore nonlinear reduced model alone, 

without correction term (open-loop observer) will be 

considered as a choice. 

Using Kalman filter is another way of calculating the 

observer gain matrix by a linear method. Matrices Q and R 

which are called spectral density of process and 

measurement noise respectively, can be used as designing 

parameters. 

To see and compare the performance of two observers 

in one diagram, we’ll define an error index. 

2
Error Index e=                                                         (22) 

Where �� is defined as follows. 

eki        Estimation error of distributed variable k in node i 

ke                       Estimation error of distributed variable k  

                                                       averaged along the cell 

e                         A vector of ke  (consists of 11 elements) 

 

Fig. 27 compares the performance of two observers  

in steady state condition. As expected open-loop observer 

is much slower than the other one. 

A problem of this error index (Eq. 22) is that 

estimation errors of 11 distributed variables are summed 
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Fig. 27: Comparing performance of observers in steady state 

condition based on error index (22). 

 
up and this way only bigger errors (which are related 

to temperatures) are reflected. To solve this problem,  

a relative error is defined. 

���� !"�#$��%�#&'(�) * #+��, +�                                    (23) 

Where ��,  is defined as follows. 

reki                           Rlative estimation error of distributed  

                                                              variable k in node i 

��-����                         Relative estimation error of distributed  

                                       variable k averaged along the cell 

��                       A vector of ��-���� (consists of 11 elements) 
 

Fig. 28 compares the performance of two observers 

based on error index (23). It is clear that Kalman filter  

is faster and more accurate than the open-loop observer. 

To examine the performance of the observers in 

unsteady state condition, the system is excited with 

changes in current density like Fig. 25. The results  

are shown in Fig. 29. From Figures 27, 28 & 29 we  

can conclude that Kalman filter is a better choice for 

observation of this system. 

 

CONCLUSIONS 

In this paper, KLG algorithm for model reduction  

is applied on a one-dimensional SOFC model. The reduced 

model is then used in state estimation of the exact model. 

In Karhunen-Loève-Galerkin (KLG) algorithm, reduced 

model is developed by using the responses of the exact 

model. To have an exact solution, “method of lines”  

is applied to distributed model. Empirical eigenfunctions 

then calculated by having dynamic responses of the exact  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 28: Comparing performance of observers in steady state 

condition based on error index (23). 

 
model and by applying Karhunen-Loève decomposition. 

These empirical eigenfunctions were used as basis 

functions in Galerkin method. Since it is a combination of 

KL decomposition and Galerkin method, the model 

reduction algorithm is called KLG. One of the advantages 

of this algorithm is that it is easily applicable on distributed 

systems which are defined on complex geometry. 

One of the key steps in KLG algorithm is how  

to select snapshots. If snapshots are not rich enough, they 

cannot transfer dominant structures of the distributed 

variables to eigenfunctions and as a result the reduced 

model comes out inefficient and it cannot imitate  

the behavior of the exact model well. Although 

eigenfunctions and hence the reduced model are made of 

a limited number of transient responses of the exact 

model, reduced model shows acceptable behavior  

in different conditions and various operating points. 

Comparing responses of reduced model with exact 

model showed good reliability and accuracy of  

the reduced model. Calculation time is also dropped 

considerably however it is predicted that if geometry  

of the system was more complex or the distributed model 

was 2 or 3 dimensional, reduction of calculation time 

would be more justifiable. 

One of the incentives of model reduction is to use  

it as a representation of the original model in real-time 

applications such as state estimation, optimization and 

control. Here state estimation was practiced with  

the reduced model. The structure of observer is based  

on the reduced model and a correction term serves as a feedback
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Fig. 29: Comparing performance of observers when system is excited based on error indices 22, 23. 

 

signal to it. Lie derivatives and coordinate transformation 

couldn’t be used to design an observer because the 

nonlinear model is not in hand in an analytical form. 

Instead a Luenberger-like observer was designed whose 

gain matrix was found by linearization and linear 

methods. Designed observer was examined by simulation 

and had acceptable performance. 

 

Nomenclature 

Cp                                        Specific heat capacity, kJ/kgK 

Ci                 Molar concentration of component i, mol/m3 

dh                                                     Hydraulic diameter, m 

Deff                              Electrode effective diffusivity, m2/s 

ea                                 Specific internal energy of air, J/kg 

ef                               Specific internal energy of fuel, J/kg 

Ea                                                 Activation energy, J/mol 

Eelectrode                         Activation energy of the exchange  

                                                          current density, J/mol 

F                                                Faraday’s constant, C/mol 

Fair                        Molar flow rate of the air stream, mol/s 

Ffuel                     Molar flow rate of the fuel stream, mol/s 

ha                                           Specific enthalpy of air, J/kg 

hf                                          Specific enthalpy of fuel, J/kg 

hi                            Specific enthalpy of component I, J/kg 

Ha                                                      Air channel height, m 

Hf                                                    Fuel channel height, m 

i                                                        Current density, A/m2 

./                                           Average current density, A/m2 

i0,electrode                                       Exchange current density 

ka,I , ka,PEN                   Convection heat transfer coefficient  

                                                                     of Air, J/m2sK 

kf,I , kf,PEN                   Convection heat transfer coefficient  

                                                                    of Fuel, J/m2sK 

k0                                  Pre-exponential constant for steam  

                                                               reforming reaction 

kelectrode                   Pre-exponential factor of the exchange  

                                                                     current density 

kwgsr                    Arbitrary high pre-exponential factor for  

                                                       water gas shift reaction 

Keq         Equilibrium constant for water gas shift reaction 

L                                                              System length, m 

n                          Number of electrons participating in the  

                                                     electrochemical reaction 

Nu                                                              Nusselt number 

P                                                             Total pressure, Pa 

pi                                  Partial pressure of component i, Pa 

R                                                       Gas constant, J/molK 

rk                                             Rate of reaction k, mol/m2s 

Rohm                                           Total cell resistance, � m2 

t                                                                               Time, s 

T                                                                 Temperature, K 

ua                                                              Air velocity, m/s 

uf                                                            Fuel velocity, m/s 

Uf                                                                Fuel utilization 

V                                                                             Voltage 

VOCV                                               Open circuit voltage, V 

0�1

2                          OCV for standard condition for the H2  

                                                           oxidation reaction, V 

W                                                              System width, m 

x                                                           Axial coordinate, m 

yi                                           Mole fraction of component i 

 

Greek letters 

α                                                          Transfer coefficient 

λair                                                                          Air ratio 
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λI                       Thermal conductivity of the interconnect,  

                                                                                  J/msK 

λPEN                Thermal conductivity of the PEN structure,  

                                                                                  J/msK 

�                                                                          Emissivity 

ηact,electrode               Activation polarization in electrode, V 

ηconc,electrode        Concentration polarization in electrode, V 

ηohm                                                           Ohmic losses, V 

�                                                 Stoichiometric coefficient 

�                                                                   Density, kg/m3 

�                                 Stefan-Boltzman constant, W/m2K4 

�anode                                        Conductivity of anode, S/m 

�cathode                                   Conductivity of cathode, S/m 

�electrolyte                            Conductivity of electrolyte, S/m 

τanode                                                Thickness of anode, m 

τcathode                                            Thickness of cathode, m 

τelectrolyte                                    Thickness of electrolyte, m 

τI                                           Thickness of interconnect, m 

 

Superscripts 

0                                   Feed condition, standard condition 

OCV                                                   Open circuit voltage 

 

Subscripts 

a                                                                                     Air 

act                                                                       Activation 

conc                                                              Concentration 

f                                                                                    Fuel 

i                                                                       Component i 

I                                                                       Interconnect 

k                                                                            Reaction 

ohm                                                                          Ohmic 

PEN     Positive electrode, Electrolyte, Negative electrode 

TPB                                                  Three phase boundary 

WGSR                                           Water gas shift reaction 
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