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ABSTRACT: In this study, the effects of solvent on the electrode potentials of menthol and carvacrol 

species were investigated experimentally and computationally and their antioxidant properties  

were compared in different solvents by calculating the half-wave potential E1/2 of species, Vand 

Dissociative Energy (BDE), Ionization Energy (IE), and Electron Affinity (EA). Electrochemical 

behavior of menthol and carvacrol species in four solvents (MeOH, EtOH, DMSO, and Heptane)  

were studied using cyclovoltametric technique in a glass electrode as a working electrode and the calculations 

for obtaining the electrode potential were performed using DFT functional including B3LYP with  

6-311+G(d,p)basis set and PCM and IEFPCM models for calculation of solvent energy. Finally,  

the results were compared and confirmed by experimental methods. Where in the compound carvacrol 

represent more properties antioxidant than menthol due to lower values E1/2 in gas and solution 

phases. Also, the lower BDE in the gas phase is 80.19 kcal/mol compared with menthol (98.91 

kcal/mol). Moreover, compound carvacrol has the IE value of 1.12 eV smaller than menthol and  

has the EA value of 0.35 eV higher than menthol. Calculations show that the model had no effect  

on computational results. Also, according to the results, the antioxidant properties of carvacrol  

in non-polar solvents were higher due to the smaller amount of E1/2. 
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INTRODUCTION 

Herbs and spices have been used as preservatives  

and medicine because of the high antioxidant activity in certain 

spices and their beneficial effects on human health [1-4]. 

Including these Herbs can be mentioned menthol and 

carvacrol. Menthol acts as a strong antioxidant and it has 

an important role in various sectors of the economy, for 

example, the pharmaceutical industry, perfumery,  

 

 

 

cosmetics, and food. Several biological functions  

are associated with species by popular medicine, used  

for the treatment of burns, headache, colic, fever, reports 

of antifungal activity, antiemetic, carminative, insecticide, 

repellent, and antibacterial [5, 6]. Carvacrol is in thyme oil, 

coconut oil, and wild coconut. There is between 5 to 75 percent 

of carvacrol in thyme, while bitter species contain  
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1 to 45 percent [7]. Several studies have shown that carvacrol 

has an anti-fungal, anti-inflammatory, ant nociceptive, 

anti-inflammatory, antibiotic, antiviral, cardioprotective, 

antidiabetics and antioxidant properties [8-10].  

Antioxidants are compounds that inhibit or eliminate 

the actions of released radicals and protect the cells from 

the harmful effects of these compounds, thus combating 

the aging process and the spread of various diseases. These 

substances can prevent the formation of free radicals  

in the body and, if formed, reduce their effect on the body [11]. 

Radicals have one or more unequal oxygen, so they are 

extremely unstable. These radicals are looking for  

a combination to absorb or lose electrons. Consequently 

they damage cells, proteins and DNA. In fact, antioxidants 

are compounds that are used to prevent or slow down  

the damage caused by oxidation reactions in the body  

and act as neutralizing free radicals and thus prevent  

the damage caused by this compounds in the body [12]. 

The antioxidant activity of a compound is related  

to the electrochemical parameters, in particular its oxidation 

potential, which provides the amount of energy needed  

to donate an electron. In fact, when the oxidation potential 

of a compound is high, it will easily emit an electron and 

its antioxidant activity will be higher [13]. Electrochemistry 

is a central technique for cyclic voltammetry, where  

the current through an electrochemical cell is measured  

as the cell potential. The accurate prediction of redox potentials 

using appropriate computational approaches can help us 

understand redox mechanisms of geochemical reactions 

and aid us in designing and optimizing redox-sensitive 

remediation techniques. As theoretical methods are used to 

predict other properties of molecules [14,15]. Redox 

action of an antioxidant at an electrode is related to its 

action in chemical redox reaction with a radical that can 

easily be performed by applying cyclic voltammetry [16-19]. 

Electrochemical organic transformations are often  

used as an efficient way to perform complicated organic 

syntheses. Various aspects involved in the 

electrochemical synthesis of organic compounds, for 

example, mechanism of redox processes, kinetics of 

electrode reactions, homogeneous or heterogeneous 

electron transfers, coupled electron transfer processes, 

have been reviewed [20-22]. 

Although the literature review shows various biological 

activities of these compounds, to the best of our knowledges, 

their antioxidant potential has not been evaluated by both 

experimental and theoretical approaches yet. Thus,  

the goal of study is to predict the free radical scavenging 

activity of two compounds carvacrol and menthol  

via two widely accepted mechanisms: Hydrogen Atom 

Transfer (HAT) mechanism and Single Electron  

Transfer (SET) and reduction potential (E1/2) of them. 

The intrinsic parameters of the studied compounds 

including Bond Dissociation Enthalpies (BDE), 

Ionization Potential (IP) and Electron Affinity (EA)  

were calculated by Density Functional Theory (DFT) approach 

at the B3LYP/6-311+G(d,p) level of theory in the gas and 

solution phases. We hope that the methods described  

in this work serve as a helpful tool to choose appropriate 

computational methods for redox-potential predictions  

in areas of chemistry, biology, and mineralogy of carvacrol 

and menthol coumpounds. However, our main intention 

is, after having evaluated computational approaches  

for the prediction of reduction potentials, to develop  

and apply a reliable computational approach. 

 
EXPERIMENTAL SECTION 

Species were dissolved in 0.1 M NaOH and solvents 

mixture with ratio 50%. The stock solutions were stored  

in darkness at 277 K to avoid decomposition. Solutions 

were purged with purified nitrogen and the temperature 

was kept at 298 ± 0.1 K.Cyclic voltammetry, controlled-

potential coulometry and preparative electrolysis  

were performed using an Autolab model PGSTAT 20 

potentiostat/galvanostat. The used working electrode  

in the voltammetry experiment was a glassy carbon disc 

(1.8 mm diameter) and platinum wire was used as counter 

electrode. The used working electrode incontrolled-

potential coulometry and macroscale electrolysis was  

an assembly of four carbon rods (6mm diameterand 4 cm 

length) and a large platinum gauze constitute thecounter 

electrode. The working electrode potentials were measured 

versus Ag/AgCl. 

 
COMPUTATIONAL DETAIL  

Computational program  

Structural of menthol and carvacrol molecules in four 

solvent MeOH, Ethanol, DMSO and Heptane  

were optimized by Density Functional Theory (DFT),  

using the B3LYP, and 6-311+G(d,p) basis set in the Gaussian 

09 computational program [23].  
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Several solvation models for the dielectric fluid 

approach are available in the literature and incorporated  

in some quantum-mechanical programs, such as PCM 

(polarizable continuum model) [24], CPCM (conductor-

like polarizable continuum model) [25–27], IEF-PCM 

(integral equation formalism-polarizable continuum 

model) [28,29], SMD (solvation model density) [30], 

COSMO (conductor like screening model) [25], COSMO-

RS (conductor like screening model for real solvents) [31,32], 

and PB (Poisson-Boltzmann) finite element model [33–35]. 

Among these solvation methods, CPCM solvation  

has been one of the most widely used solvation method  

to study solvation effects. At the present research solvation 

effects, molecular structure, solvation energies, sum  

of electronic and thermal free energies were carried out 

using models of Polarized Continuum Model (PCM) 

containing CPCM and IEFPCM calculations. 

 
Calculation method  

At the present study, the gas-phase contribution  

to the Gibbs energy, ΔG°(gas) and solvation energy, 

ΔΔG°(solv) were determined from DFT/ 6-311+G (d,p) 

level of theory. The gas-phase Gibbs free energy changes 

(ΔG°(gas)) of reaction 1 was calculated using Eq.1. 

Reaction 1:  𝐴     +     𝑒      
𝐻+

→      𝐴𝐻 

 g a s g a s g a s
G G A H G A

  
                                              (1) 

∆∆𝐺𝑠𝑜𝑙𝑣
° is calculated according Eq. 2.   

s o lv ( s o lv () ( g ) ( s o lv ) g )
G G ( A H A H ) G ( A A )          (2) 

A common practice to calculate Gibbs free-energy 

changes of a reaction (ΔG°total) is by summing ΔG°gas 

and ΔΔG°solv using the thermodynamic cycle of Scheme 1 

and Eq. 3.  

to t g a s so lv
G G G                                                            (3) 

Finaly, Eº is calculated according Eq. 4. 

 re f
G  n f  E E                                                              (4) 

Where ΔG° is total free energy for reaction 1, E° is the 

calculated potential and F is the faraday constant (F=96500 

Cmol-1). However, cycle scheme 1 effectively uses 

calculated values of ΔGg and ΔGS, and effectively uses 

empirical (accurate) values. Thus, this calculation method 

is simple, and in this cycle, the key ingredients  

for the calculation of a redox potential are the gas-phase Gibbs 

free energy of reaction and the free energies of solvation 

of the reagents, that is, of the reactants and products.  

An added advantage of this approach is that ESHE is no longer 

needed, thereby eliminating a source of uncertainty. 

However, since the method relies on systematic error 

cancellation, it is expected to work best when the reference 

molecule is structurally similar to ref. The major limitation 

of this approach is that a structurally similar reference  

with accurately known E° may not always be available. 

 

HAT/SET mechanism 

The HAT and SET mechanisms, which are the most 

widely accepted antioxidant actions, were evaluated 

[36,37].  

 

Hydrogen Atom Transfer (HAT) mechanism 

H-atom donating ability of the compounds increases  

in the descending order of BDE value.  

 

Single Electron Transfer (SET) mechanism 

Single electron transfer consists in an important 

mechanism of antioxidant [38]. In a modern concept,  

a good antioxidant via SET mechanism is not only a good 

electron donor, characterized by Ionization Potential (IP), 

but also a good electron acceptor from free racial, 

represented by electron affinity (EA) property. The lower 

the IE value is, the easier electron donation is, while  

the higher the EA is, the easier electron acceptation is.  

+ Hydrogen atom transfer (HAT):  

AH → A● + H● (BDE) 

+ Single electron transfer (SET):  

AH →AH+● + e− (IE) 

A–H + e- →AH-● (EA) 

Three intrinsic properties including BDE, adiabatic IE 

and EA which characterize for the above mechanisms  

were calculated in the gas phase as follows [38,39].  

BDE(AH) = H(A) + H(H) – H(A–H) 

IE = H(AH+●) + H(e−) – H(A–H) 

EA = H(AH-●) + H(e) – H(A–H) 

Where H is the sum of electronic and thermal 

enthalpies of the studied species at 298.15K and 1 atm 

which can be found from the output data files (Scheme 2). 
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Scheme 1: The thermodynamic cycle of Gibbs energy in the gas phase solution for menthol and carvacrol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2: Mechanisms of antioxidant reacting with free radical 

 

RESULTS AND DISCUSSION 

The electrochemical behavior of menthol and carvacrol 

species was studied using cyclic voltammetry method  

in a glass carbon electrode considered as a work electrode 

in such studies [40-45] (Figs. 1 and 2). 

Investigation of the oxidation potentials of both  

the menthol and carvacrol compounds show that carvacrol 

oxidation is easier than menthol in different solvents.  

This means that carvacrol can remove electrons more easily. 

As a result, it has higher antioxidant strength. The Effect 

of solvent was done on the oxidation reaction  

of the compounds studied in DMSO, methanol, ethanol  

and heptane solvents by constant holding of all other 

parameters (electrolyte type and concentration, dissolution 

concentration and scanning voltage). 

Studies show that for menthol there is no voltammetry 

response in ethanol, which means that the chemical 

oxidation of this compound in this solvent requires  

of a potential higher than the maximum potential of the device 

relative to the Ag/AgCl electrode [46, 47].  

On the other hand, for two studied compounds  

in the other solvents, an anodic peak was observed, with 

no definite or unknown cathode peak in the reverse-scan 

phase, indicating that oxidation in the carbon electrode  

is an irreversible process [48]. This observation is  

in agreement with other relevant studies concerning some 

of the currently investigated drugs [49]. 

The half-wave E1/2 potential for the species studied  

in each solvent is listed in Table 1. In carvacrol, oxidation 

process is more easily accomplished by reducing solvent 

polarity. But in menthol, the reduction of solvent polarity 

does not have a significant effect on the oxidation 

potential. In these two combinations, the sensitivity  

of the oxidation potential relative to solvent is not similar. 

As shown by Eap the difference in oxidation of carvacrol 

with the replacement of non-polar solvent of heptane  
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Fig. 1: Cyclic voltammogram of 1.0 mM of  menthol in (A): methanol (B): DMSO (C): Heptane solvents  

at a glassy carbon electrode. Scan rate; 100 mV/s. 

 

is significant. However, the oxidation values for menthol  

in polar and non-polar solvents are not significantly different. 

Due to the wide peak in menthol (Fig. 1), the mechanism 

of oxidation seems to be several-stages [49] (Scheme 3). 

The first step is to liberate OH-oxidation into a radical 

form, which can be called the stage of deprotonation.  

The second stage is the formation of the C=O functional 

group and the oxidation of the composition. 

Stability of Intermediate does not change with change 

of solvent, so the solvent changes will not have  

a significant effect on the oxidation process. However,  

it is suggested that the oxidation mechanism of carvacrol 

is as follows (Scheme 4). 

Electrification of the methyl group at para position 

increases the stability of the final species in carvacrol 

resulting in a more stable intermediate. Therefore, 

carvacrol will tend to oxidize more than menthol.  

As shown in Table 1, the redox potential increases as solvent 

polarity increases. The reason of this observation  

can be hypothesized to be the interaction of the polar 

solvent with the electron cloud of the aromatic ring  

of the carvacrol, which prevents its easy oxidation in these 

solvents. As a result, carvacrol has the least redox potential 

in the non-polar solvent of heptane. In other words,  

it is easier to lose electrons and be more potent antioxidant.  

All of oxidation and reduction forms of studied 

compounds are calculated in the gas and solution phases 

using 6-311+g (d,p) basis set at DFT level of theory  

with two models CPCM and IEFPCM. Free energy, ΔΔG0
solv 

and ΔGtot of menthol and carvacrol species studied in four 

solvent (MeOH, EtOH, DMSO and Heptane) by CPCM 

and IEFPCM models are included in (Tables 2,3). E1/2 for 

both the menthol and carvacrol compounds in methanol, 

DMSO, ethanol and heptan solvents were calculated using 

both CPCM and IEFPCM models (Table 3) . 

By comparing E1/2 of the studied species in various 

computational models of CPCM and IEFPCM, it is 

understood that the method does not have much effect  
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Fig. 2: Cyclic voltammogram of 1.0 mM of carvacrol in (A): methanol (B): DMSO (C): ethanol D: Heptane solvents at a glassy 

carbon electrode. Scan rate; 100 mV/s. 

 

 

 

 

 

 

 

 

 

Scheme 3: The oxidation mechanism of menthol compound. 

 

on computational results for menthol and carvacrol species 

(Table 4). The observed diversity in the electrochemical 

behavior of antioxidant compounds such as menthol and 

carvacrol shows that only one solvent parameter, such as 

polarity, cannot effect the amount of solvent-soluble 

interaction in molecular discussion. Even the stability of 

the resulting intermediates for oxidation can play  

an effective role in this regard.  

The lack of significant differences in experimental  

and computational amounts shows that computational models 

can provide an accurate indication of the electrochemical 

behavior of antioxidant species. Based on this, one  

can simulate the electrochemical behavior and, finally,  

the antioxidant properties of different species using computer 

calculations in different solvents.  

 

Structural, electronic properties and orbital distributions 

Fig. 3 shows the optimized structures, HOMO, LUMO 

distribution and electrostatic potential (ESP) maps 

calculated at the B3LYP/6-311+G(d,p) level of theory  
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Table 1: Results of half-wave potentials experimental. 

E1/2 Exp. Eap Solvent Comp. 

0.276 0.290 Methanol  

0.270 0.284 DMSO Menthol 

--------- --------- Ethanol  

0.280 0.298 Heptane  

0.240 0.240 Methanol  

0.278 0.278 DMSO Carvacrol 

0.288 0.288 Ethanol  

0.187 0.187 Heptane  

 

Table 2: Gibbs energy, ΔΔG0
solv and ΔGtot of menthol and carvacrol for both reduced (AH) and oxidized (A) forms in the gas and 

solution phases calculated using 6-311+g(d,p) basis set at DFT level of theory with CPCM model. 

/mol)J(ktot ΔG /mol)J(k solv 
0ΔΔG (AH) (a.u) sol

0G (A) (a.u)sol 
0G (a.u)(AH)  gas

0G (a.u)(A)  gas
0G Solvent Comp. 

3101.0095- 4.6760 468.241430- 467.059611- 468.235600- 467.052700- Methanol 

Menthol 
-3102.8160 2.8880 468.241494- 467.059694- 468.235600- 467.052700- DMSO 

----------- ---------- ---------- ----------- ---------- --------- Ethanol* 

3082.9174 22.7867 -468.229826 467.055605 468.235600- 467.052700- Heptane 

1641.1686- 3.6494 464.689525- 464.064437- 464.683181- 464.056703- Methanol 

Carvacrol 
1641.0952- 3.7229 464.689596- 464.064536- 464.683181- 464.056703- DMSO 

-1641.2822 3.5680 -464.689452 -464.056703 464.683181- 464.056703- Ethanol 

-1645.8761 1.0580 -464.059988 -464.686063 464.683181- -464.056703 Heptane 

* In experimental eny peak seen for Ethanol so not performed calculation in this solvent. 

 

 

 

 

 

 

 

 

 

 
 

Scheme 4:  The oxidation mechanism of carvacrol compound 

 

for menthol and carvacrol. The highest occupied molecular 

orbitals (HOMOs) and the lowest occupied ones (LUMOs) 

of the two studied compounds are also presented in Fig. 3. 

We can see that both frontier orbitals are distributed at the 

rings and the OH groups. For that reason, the electron 

transfer reactions may occur at the rings. Finally, Fig. 3 

also displays ElectroStatic Potential (ESP) maps of two 

compounds. In principal, the electrostatic potential levels 

are represented by different ranges of colors: the red color 

as the most negative electrostatic potential while the blue 

one as the most positive potential. As can be seen in Fig. 3, 

the most negative electrostatic potential regions  

are located at oxygen atom positions, while the positive 

electrostatic potential areas contain the C atoms of rings. 
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Table 3: Gibbs energy, ΔΔG0
solv and ΔGtot of menthol and carvacrol for both reduced(AH) and oxidized (A) forms in the gas and 

solution phases calculated using  6-311+g (d,p) basis set at DFT level of theory with IEFPCM model. 

/mol)J(ktot ΔG /mol)J(k solv 
0ΔΔG (AH) (a.u) sol

0G (A) (a.u)sol 
0G (a.u)(AH)  gas

0G (a.u)(A)  gas
0G Solvent Comp. 

-3073.8673 31.8368 -468.232995 -467.059616 468.235600- 467.052700- Methanol 

Menthol 

 

-3080.7120 31.8368 -468.233101 -464.059720 468.235600- 467.052700- DMSO 

--------- --------- --------- --------- --------- --------- Ethanol* 

-3082.1298 23.5743 -468.229152 -467.055231 468.235600- 467.052700- Heptan 

-1640.0160 4.8020 -464.689460 -464.064812 464.683181- 464.056703- Methanol 

Carvacrol 

-1637.7619 4.4633 -464.689590 -464.064812 464.683181- 464.056703- DMSO 

-1640.5569 4.2611 -464.689367 -464.064512 464.683181- 464.056703- Ethanol 

-1643.5762 1.2418 -464.685508 -464.059503 464.683181- 464.056703- Heptan 

 

Table 4: Comparison of results of half-wave potentials calculated with experimental and obtained MUE from  

calculated Redox potentials in two methods CPCM and IEFPCM. 

MUE 

IEFPCM 

MUE 

CPCM 

E1/2 

Exp. 

E1/2 

IEFPCM 

E1/2 

CPCM 
Solvent Comp. 

0.048 0.047 0.276 0.228 0.229 Methanol 

Menthol 

0.042 0.041 0.270 0.228 0.229 DMSO 

--------- --------- --------- --------- --------- Ethanol 

0.052 0.052 0.280 0.228 0.228 Heptane 

0.027 0.026 0.240 0.213 0.214 Methanol 

Carvacrol 

0.065 0.064 0.278 0.213 0.214 DMSO 

0.074 0.074 0.288 0.214 0.214 Ethanol 

-0.027 -0.027 0.187 0.214 0.214 Heptane 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Optimized structures, HOMO, LUMO distribution and electrostatic potential (ESP) map. 
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Table 5: BDE, IP and EA values of menthol and carvacrol calculated at the B3LYP/6-311+G(d,p) model in the gas phase. 

EA (ev) IP (ev) BDE (kcal/mol) 
Comp. 

0.35 6.12 80.19 Carvcarol 

0.00 7.31 98.91 Menthol 

 

Table 6: BDE, IP and EA values of menthol and carvacrol calculated using 6-311+g (d,p) basis set at DFT  

level of theory with CPCM  model. 

EA (ev) IP (ev) BDE (kcal/mol) Solvent Comp. 

-0.1055 7.3654 99.06 Methanol  

-0.1061 7.3660 99.06 DMSO Menthol 

-0.1053 7.3649 99.06 Ethanol  

-0.0633 7.3363 99.02 Heptane  

0.4666 6.2746 79.29 Methanol  

0.4682 6.2765 79.27 DMSO Carvacrol 

0.4650 6.2729 79.31 Ethanol  

0.3942 6.1940 79.89 Heptane  

 

BDE, IP and EA values of menthol and carvacrol 

calculated at the B3LYP/6-311+G(d,p) model in the gas 

phase are shown in Table 5. In comparison with the BDEs 

values of other well-known antioxidants such as phenol 

(87.2 kcal/mol) [50], α-terpinene (74.4 kcal/mol) [51] 

BDE in the gas phase being 98.91 and 80.19 kcal/mol for 

menthol and carvacrol respectively. The calculated 

adiabatic ionization potentials (IP) are obtained 7.31 and 

6.12 eV for menthol and carvacrol were and electron 

affinity (EA) also calculated 0.00 and 0.35 eV for menthol 

and carvacrol (Table 5). From this results understand that 

carvacrol trend to farther oxidation compared with 

menthol. Values of BDE, IE and EA of menthol and 

carvacrol in different solvents are calculated (Table 6 and 

7). These results emphasis antioxidant properties of 

carvacrol compared with menthol at different solvents is 

farther. Literatures shows by employing the different 

methods and models, redox potentials of different organic 

compounds in several solvents were calculated (Table 8). 

Table shows that obtained MUE from calculated Redox 

potentials of this work as previously other works  

were calculated values of MUE. 

 

CONCLUSIONS  

In this work, we studied electrochemical and 

antioxidant properties of two spaces menthol and carvacrol 

by two method of computational: E1/2 calculation  

by thermodynamic cycle and Hot/Set mechanism  

and results compared with redox potentials of obtained 

cyclo vaoltamety. The results of cyclo voltammetry showed:  

1- Redox potentials of menthol compared with 

carvacrol are high. 

2- Electrochemical mechanism of carvacrol oxidation 

in spite of menthol depended on solvent polarity. 

3- Computational data showed that the 

modification of the method for menthol and carvacrol 

compounds did not have much effect. Electrochemical 

results approximately are same in CPCM and IEPCM 

method. 

4- BDE, IP and EA values of menthol and carvacrol 

calculated at the B3LYP/6-311+G (d,p) level in the gas 

phase show this values is adapted to calculation of E1/2  

and cyclo voltametry results.  

 5- Antioxidant properties of carvacrol were due to 

smaller presence of E1/2 in non-polar solvents is more 

likely to be a criterion for selecting this compound  

in chemical and biochemical reactions as an antioxidant. 

We hope that the methods described in this work serve 

as a helpful tool to choose appropriate computational 

methods for redox-potential predictions in areas of  

chemistry, biology, and mineralogy of many spaces  

such carvacrol and menthol. 
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Table 7: BDE, IP and EA values of menthol and carvacrol calculated using 6-311+g (d,p) basis set at DFT level  

of theory with IEFPCM  model. 

EA (ev) IP (ev) BDE (kcal/mol) Solvent Comp. 

0.1058 7.3632 99.03 Methanol  

0.1061 7.3646 99.04 DMSO Menthol 

0.1053 7.3622 99.02 Ethanol  

0.5686 7.3232 98.97 Heptane  

0.4609 6.2691 79.28 Methanol  

0.4642 6.2724 79.27 DMSO Carvacrol 

0.4576 6.2656 79.29 Ethanol  

0.3676 6.1668 79.82 Heptane  

 

Table 8: Studied compound in literatures compared with this work. 

Comp. MUE (ev) Model Ref. 

Quinones 0.03 B3LYP/PCM [52] 

Nitroxide 0.05 PCM/B3LYP [53] 

Aazaphenalene nitroxide 0.06 PCM/B3LYP [54] 

Polyaromatic hydrocarbons 0.03 B3LYP/SMD [54] 

Polyaromatic hydrocarbons 0.07 B3LYP/ CPCM [55] 

Cyclic nitroxide 0.2–0.50 CBS-QB3/ CPCM [56] 

Flavonoids 0.06 CPCM [57] 

Flavonoids 0.04 M06-L DFT/SM6 [58] 

Menthol and Carvacrol 0.02-0.07 B3LYP/CPCM/IEPCM - 
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