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ABSTRACT: In this research, modeling, simulation, and control of a methanol-to-olefins laboratory 

fixed-bed reactor with electrical resistance furnace have been investigated in both steady-state and 

dynamic conditions. The reactor was modeled as a one-dimensional pseudo-homogeneous system. 

Then, the reactor was simulated at steady-state conditions and the effect of different parameters 

including inlet flow rate, inlet temperature and electrical resistance temperature on reactor 

performance was studied. Results showed that the most effective parameter is electrical resistance 

temperature. Thus, it was selected as manipulating variable for controlling product quality. In the 

next step, dynamic simulation of the process was performed and the effect of different disturbances 

on the dynamic behavior of the reactor was assessed. Finally, PID and Neural Network Model 

Predictive (NNMP) controllers were utilized for process control and their performances  

were compared to each other. The response of the control system to different disturbances and set point 

changes showed that both PID and NNMP control systems can maintain the process at the desired 

conditions. PID controller had smaller rise time and no offset compared to NNMP controller while 

NNMP controller had smaller overshoot. 
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INTRODUCTION 

Light olefins including ethylene and propylene are 

very important intermediate components in petrochemical 

industries. Global demand for ethylene and propylene 

was significantly high in recent years. This growth rate of 

demand for light olefins, as well as significant increase of 

crude oil price, has brought about more attention to  

the direct production technologies, especially from non-oil 

resources [1]. 

Recently methanol has gained more attention for this 

purpose. Performed schedules for significant increase in 

global production capacity of methanol, introduce it as  

 

 

 

a non-oil resource for production of light olefins. Process 

of converting methanol to hydrocarbons recently has gained 

attention as a powerful method to convert coal  

into gasoline. In fact, by the aid of this new technology, 

almost anything can be made from coal or natural gas 

which can be made from crude oil. For coal-rich 

countries, e.g. China, developing coal-based olefins 

industry is of great importance for their national 

economy [2.3]. 

MTO process was first discovered in 1970s during 

development of Mobil’s Methanol-To-Gasoline (MTG)   
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process over a medium-pore zeolite of ZSM-5 class [4]. 

Considerable efforts were subsequently assigned to the 

MTO process and significant advancements have been 

achieved during the past years which cover various 

aspects of the process, such as catalyst evaluation [5-8], 

reaction mechanism [9-12], kinetic modeling [13-21],  

and catalyst deactivation [22-27]. This process is also 

attractive because of its low CO2 emission [28]. 

The kinetic models for this process can be grouped 

into two main classes: 

(a) Lumped models, which are an agreement between 

simplicity and representation of the process reality. It was found 

in 1970s that the initial step of ether formation is  

much more rapid than the subsequent olefins forming 

step, and is essentially at equilibrium [29, 30]. Thus,  

the equilibrium oxygenate mixture can be treated as a single 

kinetic species. Based on these facts, Voltz & Wise 

developed a lumped kinetic model [31]. Bos et al. [13] 

presented a kinetic model for MTO process using SAPO-34 

catalyst. This kinetic model involves 12 reactions  

where 10 reactions are first order and two others are 

second order. Gayubo et al. [14] modeled methanol  

to olefins process in a fixed bed reactor with SAPO-34 

catalyst using kinetic model proposed by Bos et al. [13]. 

They proposed a kinetic model and studied the role of 

water on catalyst activity and selectivity [32]. Chen & 

Reagan found out that the oxygenate disappearance over 

ZSM-5 is autocatalytic [33]. Autocatalysis was supported 

by measurements obtained by Chang et al. who extended 

the model with some assumptions [34]. 

(b) Detailed models, that take into account individual 

reaction steps. Park & Froment developed a software  

tool to determine components involved in the reaction [15, 16]. 

Mihail et al. [19] developed a detailed kinetic model 

based on ZSM-5 catalyst which involves 53 reactions and 

36 species including intermediates. Kaarsholm et al. [21] 

also developed a detailed kinetic model for reaction of 

methanol over ZSM-5 catalyst in a fluidized-bed reactor. 

In their work influence of water on kinetics was taken 

into account and kinetic parameters of the reactions were 

found using constrained optimization. 

In general, the conversion of methanol to olefins 

reaction can be done in fixed or fluidized-bed reactors. 

Although, the fluidized-bed reactor has some advantages 

in exothermic reactions due to better heat transfer and 

temperature control, but relatively low methanol 

conversion with significant catalyst attrition, and also 

high investment for reactor scale up, are the main 

disadvantages [35]. Fixed-bed reactor is simple in 

construction and easily operable and is a primary type of 

reactor that must be considered and plays a very 

important role in chemical industry [36, 37]. 

Modeling and simulation of fluidized and fixed-bed 

reactors of MTO process have been performed for many 

industrial and pilot-scale reactors. Schoenfelder et al. [38] 

developed a reactor model of Circulating Fluidized  

Bed (CFB) for MTO process. A lumped kinetic model 

was incorporated into model equations. In their study,  

the kinetic experiments were carried out in a standard 

fixed-bed reactor instead of CFB. Soundararajan et al. [39] 

modeled MTO process at steady-state conditions using 

SAPO-34 catalyst within a CFB reactor and used kinetic 

model of Bos et al. [13] for process modeling. They 

performed their simulations at 450°C and atmospheric 

pressure and investigated the effect of coke content and 

exit geometry on olefins yield and found that optimum 

ethylene yield is 27.2 wt% with 5% coke on catalyst. 

Alwahabi & Froment [35] predicted yields and 

selectivities of products in fixed-bed reactors, either 

multi-tubular and quasi-isothermal or multi-bed adiabatic 

and also in fluidized bed reactors. Zhuang et al. [37] 

performed dynamic simulation of MTO process in  

a fixed-bed reactor using Fluent. The catalyst they used 

was SAPO-34. They investigated the effect of feed 

temperature, space velocity and water/methanol ratio  

on the reactor performance and found their optimum 

values. Chang et al. [40] used CFD model for  

simulation of MTO process in a fluidized-bed reactor. 

They investigated velocity profile, volume fraction  

and species concentrations in axial and radial 

directions of the reactor and the effect of coke 

deposition on methanol conversion [40]. Also Lu et al. [41] 

performed CFD simulation of MTO process  

in a fluidized-bed reactor. They integrated chemical 

reaction engineering model in order to speed up 

simulations. Both above-mentioned works extended 

the work of Soundararajan et al. [39] who modelled  

a circulating fluidized-bed reactor for MTO process  

on SAPO-34 catalyst. 

Although few studies have been carried out on dynamic 

simulation of fixed-bed reactors, no significant work was 

found for control of MTO process in this type of reactors. 
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Fig. 1: Experimental reactor used for MTO process. 

 

In this study, dynamics behaviour of MTO process  

in a fixed-bed reactor was investigated using mathematical 

modeling and simulation. Also, control of the process 

using classical and Artificial Neural Network (ANN)-

based controllers and their performance has been assessed. 

 

THEORITICAL  SECTION 

Reaction kinetics 

The kinetic model used in this paper is the model of 

Mihail et al. [19] who proposed reaction path for the 

methanol conversion to hydrocarbons as below: 

2

2

H O

3 3 3H O
CH OH CH OCH





                             (1) 

Paraffins
Light olefins

Aromatics





 

As mentioned before, the model consists of 53 

reactions in which 5 reactions are in equilibrium. Detailed 

reaction network is presented in Appendix A. All 

reactions are assumed to be elementary and their kinetic 

equations are represented in the following form [19]. 

 i js
am

i 1j j i j j0 j
R k C , k k exp E RT ,


                (2) 

j 1,2, ,m  

All parameters are introduced in Symbols section. 

The most important species include methanol, water, 

ethylene and propylene. 

Reactor model 

Olefins production process studied in this research 

consists of a fixed bed reactor with electrical resistance  

furnace as illustrated in Fig. 1. The process involves 

injecting methanol as feed into a reactor with a glass tube 

that is electrically heated. Specifications of fixed-bed 

reactor are presented in Table 1 [19]. 

Using an adiabatic reactor causes a sharp increase  

in temperature of the reactor which can damage catalyst. 

On the other hand, if the temperature of the reactor is reduced 

below a specified value because of heat transfer to 

ambient, methanol conversion will not occur. Therefore, 

the temperature inside the reactor must be adjusted  

at an optimal level. For this reason, it is needed to place  

an electrical resistance around the reaction zone, to maintain 

the temperature about 50°C under the temperature inside 

the reactor, because the main reactions are highly 

exothermic. The catalyst used in this process is ZSM-5 

with SiO2/Al2O3 ratio of 24 [19]. 

 

Mathematical model 

In this study, fixed-bed reactor was modeled as a one-

dimensional, pseudo-homogeneous dynamic reactor.  

The following assumptions was made for process modeling: 

1. The flow pattern through the reactor is assumed  

to be plug. 

2. Axial diffusion and dispersion is assumed 

negligible with respect to bulk mass transfer. 



Iran. J. Chem. Chem. Eng. Farzi A. et al. Vol. 36, No. 2, 2017 

 

178 

Table 1: Specifications of fixed-bed reactor shown in Fig. 1. 

Active Length (m) 0.1 

Diameter (m) 0.02 

Catalyst volume (m3) 10-5 

Volume of inert material (m3) 10-5 

Inlet pressure (Pa) 101325 

Feed components CH3OH and/or H2O 

 

3. There is no radial temperature and concentration 

gradients, based on assumption 1. 

4. Because catalyst particles are very small, the 

concentration and temperature variations within pores of 

particles can be neglected. 

5. Effectiveness factor is assumed to be fixed at 1. 

6. Gas phase is assumed to be ideal. 

Based on the above assumptions component-mass and 

energy balance equations was obtained for the process 

which are presented as below: 

Mass balance for component i: 

 i i
i s

F F
u 1 u r A, i 1,2,. . . ,m

t z

 
     
 

           (3) 

where: 

m

i ij j
j 1

r R


                                                                     (4) 

Energy balance: 

   s
m ig
i 1 i pi ca t. pca t.

T
F C R 1 C

uA t


  
       

            (5) 

     s
m mig
i 1 j 1a i pi j j

4U 1 T
T T FC 1 R H

d A z
 


    


   

37 partial differential equations were obtained from 

component mass and energy balances including 

intermediate species which must be solved simultaneously, 

to obtain profiles for concentrations of components and 

temperature through the bed at dynamic conditions. 

Initial and boundary conditions for solving the 

equations are as below: 

Boundary conditions: 

i z 0,t i0 z 0,t 0
F F , T T

 
    

Initial conditions: 

ss ss

i z,t 0 i z,t 0
F F , T T

 
    

Overall heat transfer coefficient was calculated using 

the following equation [19]: 

 ra conv

1 1 1

2U K
1

d

 
 

   
 

                                    (6) 

Convective heat transfer coefficient, conv., was taken 

from the work of Green & Perry [42]. Radiative  

heat transfer coefficient, 
raα , was computed according to 

Hottel & Sarofim [43]. Conduction heat transfer 

coefficient of the outer wall, K, is given by Froment [44]: 

W Meff W,eff
ra

1 d 1 1

2RK 8
.

d

  
 




                         (7) 

where 
MR  is defined as: 

M
R

2
ln 1

d




 
 

 

                                                           (8) 

The effective radial conductivity of the bed and the 

effective wall heat transfer coefficients were computed 

according to [45-47]. 

 

Numerical Method 

For solving the system of nonlinear partial differential 

equations obtained from dynamic modeling, method of 

lines was used. In this method time derivative is kept 

unchanged and partial differential equations are 

converted into a set of ordinary differential equations  

by applying finite differences method on derivatives with 

respect to spatial coordinate [48]. The number of obtained 

ordinary differential equations depends on the number of 

divisions applied on the reactor length. 

 

Electrical Resistance Furnace model 

When theoretical models are impractical or 

impossible to obtain, for example when the process is 

complex or there are many parameters in theoretical 

model, semi-empirical models of the process can be good 

alternative which are usually based on the open-loop 

response of the system. Table 2 shows the specifications 

of a laboratory electrical resistance furnace equipped with 

a temperature controller. 

Fig. 2 shows the response of this system to a +50ºC 
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Table 2: Specifications of laboratory-scale electrical resistance 

furnace. 

Maximum temperature of the furnace (K) 1073.15 

Inside diameter (m) 0.06 

Length (m) 0.3 

Maximum power (kW) 1.5 

Maximum intensity of the electric current 
(A) 

7 

Temperature Control System PID 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Experimental response obtained for +50ºC step change 

in input temperature of electrical resistance furnace. 

 

step change in its input. As can be seen, electrical 

resistance furnace acts as a second order system with 

delay. 

 

 

d
s

pa
furnace 2 2

a ref

K eT s
G

T s s 2 s 1



 
   

                            (9) 

The parameters of the system were estimated based 

on the above system response and are given in Table 3. 

 

Process control 

For control of MTO process two types of controllers 

including PID and ANN-based controllers were used. 

Although PID controller is well-known for all 

researchers, but use of ANNs for process control is 

relatively a new area of research. ANNs are simplified 

models of biological neural networks and have learning 

capability like human. A feed-forward ANN consists of 

an input layer, one or more hidden layers consisting of 

neurons and one output layer whose number of neurons  

is equal to the number of network outputs. Each neuron 

applies an activation function on weighted sum of its 

inputs to generate its output [49, 50]. The schematic of  

a simple multi-layer feed-forward artificial neural network is 

shown in Fig. 3, where xi is input variable to the i th 

neuron, wi,j represents weight between output of neuron i 

and input of neuron j, k is weight of bias input to kth 

neuron, and Ok is network output from kth output neuron. 

Training of an ANN means adjustment of all weights 

in the network by the aid of a training algorithm in such  

a way that for a specified set of input variables its outputs 

fit closely the desired outputs or targets of the system. 

After training, it can be used for the simulation of real 

system [49-50]. 

Feed-forward ANNs are statics systems and can only 

be used to model steady-state conditions. Because 

process control is inherently dynamic, they cannot be 

used directly and must be extended to include time 

changes of input and output variables of the system. 

Recurrent networks are another class of ANNs which 

are used for modeling and simulation of dynamic 

systems including process control. These networks can 

store values of their input and output variables at 

previous time steps in order to use at current time step 

for prediction of current outputs of the network. 

Training of these networks is more complex than feed-

forward ANNs, but the basics are the same. Initially, 

different sets of inputs and outputs of real system at 

dynamic conditions are gathered and then they are used 

for training of the network [49, 51]. 

There are different types of recurrent networks which 

are used for process control. Among them one of the 

widely-used method is Neural Network Model Predictive 

Control (NNMPC) method. In this method, discrete-time 

process model is used to predict future behavior of  

the system, and an optimization algorithm is used to calculate 

the control input that optimizes future performance.  

The objective function is a weighted least squares function 

of outputs of processing system, set point and controller 

outputs which must be minimized subject to constraints 

such as maximum overshoot, rise time, etc. The 

optimization problem could be solved by classic 

optimization techniques, search methods, or evolutionary 

algorithms. The details of optimization problem can be 

found in [52]. 
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Table 3: Calculated parameters for closed-loop electrical resistance furnace model (Eq. (9)). 

Kp  (s)  d (s) 

1 225.6 0.517 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Schematic of a multi-layer feed-forward ANN. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: Structure of NNMP control system used in this study. 

 

The neural network is trained offline. Because of 

using an optimization algorithm for prediction of future 

input to the process it can control and reject disturbances 

with good speed and low overshoot [52-57]. In this work 

NNMP controller of MATLAB™ neural network toolbox 

was used. The structure of NNMP control system used  

in this study is shown in Fig. 4: 

 

RESULTS  AND  DISCUSSION 

Steady-state simulation 

Before carrying out dynamic simulation, optimum 

initial conditions of the system must be obtained  

by solving model equations at steady-state conditions.  

For steady-state simulation, accumulation terms in mass 

and energy balance equations were set to zero. Then  

the resulting system of 37 ordinary differential equations  

was solved using a specific type of Runge-Kutta method 

for solving the system of stiff equations [58]. The results 

of steady-state simulation of MTO process are presented 

at below. 

 

Effect of water content on reactor performance 

To investigate the effect of water content on reactor 

performance, two tests were performed. In first test, pure 

methanol was injected into the reactor and product 

distribution along the reactor was obtained by  

simulation which is illustrated in Fig. 5. As can be seen, 

methanol concentration decreased through the reactor 

while concentrations of products increased. Di-methyl 

ether is an intermediate product and its concentration 

ANN Model Optimizer 
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Table 4: Operating conditions [19] and simulation results at steady-state conditions 

Run no. 2 Run no. 1 Operating conditions 

0.293 0.274 Mass flow-rate   105 (kg/s) 

75 + 25 100 + 0 Feed composition, CH3OH+H2O (wt%) 

650 650 Feed Temperature (K) 

610 610 Electrical resistance temperature (K) 

 

Run no. 2 Run no. 1  

Error MODEL EXP. Error MODEL EXP. Components (wt%) 

1.88% 63.55 62.38 1.83% 52.17 53.14 H2O 

8.10% 5.22 5.68 2.87% 6.77 6.97 C2H4 

38.91% 2.7 4.42 47.68% 2.7 5.16 C3H6 

31.51% 1.5 2.19 36.76% 1.6 2.53 C4H8 

43.24% 0.21 0.37 38.46% 0.32 0.52 C5H10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Product distribution with inlet pure methanol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Product distribution with inlet methanol (75 wt%) and 

water (25 wt%). 

 

firstly increases and then decreases. In second test, 

methanol and water were injected together in order to 

observe the effect of adding water into inlet flow. Profiles 

of products distribution along the reactor obtained by 

simulation are shown in Fig. 6. By comparing the results 

of two tests it is evident that by adding water into inlet 

stream, light olefins concentration decreased slightly. 

Inlet water greatly influences temperature distribution 

and causes the temperature inside the reactor to decrease. 

Also, using water in inlet stream reduces coke formation 

on catalyst and prevents catalyst deactivation. Simulation 

and experimental results as well as percent error of 

simulation results for main components, are presented in 

Table 4. The results show an acceptable match and 

therefore the assumptions are appropriate. 

Influence of water on temperature distribution within 

the reactor is shown in Fig. 7. As can be seen, 

temperature increases sharply at inlet of the reactor 

because the main reactions are highly exothermic and 

fast. Then, because of the start of endothermic reactions, 

temperature decreases. Temperature increase is lower  

in the case of adding water to inlet stream which is because 
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Fig. 7: Temperature profile for - . inlet pure methanol and ― 

inlet methanol+water. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Concentration profiles of products along the reactor 

for different inlet temperatures, (a) ethylene, (b) propylene. 

of decreasing methanol content of the feed and high 

specific heat capacity of water. Considering benefits of 

adding water at reactor inlet, influence of other 

parameters on reactor performance will be discussed  

in the case of injecting water and methanol together  

into the reactor. 

 

Effect of inlet temperature on reactor performance 

Besides the main reaction, there are many other 

reactions taking place inside the reactor and producing 

different byproducts. So, the temperature should be 

optimized in such a way that favors the main reaction. 

Fig. 8 (a) and (b) illustrate concentration profiles of the 

main products (ethylene and propylene) within the reactor 

with respect to inlet temperature. As can be seen, 

increasing inlet temperature causes main products to 

decrease slightly because the main reaction is exothermic 

and temperature increase shifts main reaction to the left. 

However, at low temperatures the rate of the main 

reaction decreases sharply. As it is illustrated in Fig. 9  

the maximum temperature within the reactor increases 

with increase of inlet temperature and also its location moves 

towards the inlet of the reactor. The results at outlet of  

the reactor demonstrate that fixed-bed reactor is not highly 

sensitive to changes in inlet temperature. This is one of 

the most important advantages of this type of reactors. 

According to Fig. 9, the best value for inlet temperature 

was selected as 650K between other assessed values  

in this research. In this temperature, the main reactions  

will take place at good speed while generation of hot spot 

within the reactor is prevented. 

 

Effect of electrical resistance furnace temperature on 

reactor performance 

Fig. 10 illustrates the effect of electrical resistance 

temperature on ethylene and propylene weight percent at 

reactor outlet when inlet temperature was 650K. As can 

be seen, furnace temperature strongly affects product 

yield. Thus, it can be chosen as manipulating variable  

for process control. As shown in Fig. 10, there is an optimal 

value within tested electrical resistance temperature range 

for maximizing main product concentration. 

 

Structure of control system 

Because MTO process is usually performed in a  

non-adiabatic fixed-bed reactor, control of maximum 
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Fig. 9: Temperature profile along the reactor for different 

inlet temperatures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Ethylene weight percent at the reactor outlet with 

respect to different furnace temperatures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11: Response of the maximum temperature within the reactor 

to a +20 ºC step change on electrical resistance temperature. 

temperature inside the reactor is very important in order 

to avoid catalyst deactivation at high temperatures. Thus, 

signal of maximum temperature measurement inside  

the reactor must be sent to a temperature controller to control 

the maximum temperature by manipulating electrical 

resistance furnace temperature which was found as  

the most affecting parameter. In this work PID and NNMP 

controllers were investigated for process control and their 

performances were compared to each other. 

 

PID controller 

In order to design a controller for the process,  

the relationship between maximum temperature inside  

the reactor and electrical resistance temperature was modeled 

using open loop response. For this purpose, a step change 

of +20 ̊C on steady-state value of electrical resistance 

temperature was applied. 

According to Fig. 11, response of maximum temperature 

can be approximated by a second order with time delay 

model whose calculated parameters are shown in Table 5. 

Internal Model Control (IMC) technique was used for 

tuning the parameters of PID controller [59]. In this 

method parameters of PID controller are calculated using 

the following equations: 

 c c D
I

1
G s K 1 s

s

 
     

, PID Controller transfer function  (10) 

 c

p c d

2
K

K




  
                                                        (11) 

I
2                                                                          (12) 

2

D 2


 


                                                                     (13) 

where c is a tuning parameter and is obtained by 

minimizing integral of square of errors for set point 

tracking. Calculated PID parameters are given in Table 6. 

 
Set point tracking 

Set point tracking capability of the designed control 

system was assessed by applying 8 ˚C step change on the 

set point of maximum temperature inside the reactor. Fig. 12 

shows the response of the system for this step change. 
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Table 5: Approximated input-output relationship between 

maximum temperature within the reactor and electrical 

resistance furnace temperature. 

Kp 0.362 

 (s) 240.6 

 0.41 

d
 
(s) 33.9 

 

Table 6: Parameters of designed PID controller. 

Kc 8.25 

I (s) 197.18 

D (s) 293.62 

c (s) 32.17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12: Performance of the control system due to a step-

change on reactor maximum temperature set-point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13: Response of maximum temperature inside the reactor 

for disturbance rejection applied on feed composition. 

As can be seen, the maximum temperature approaches  

to the new set point value with acceptable speed and 

oscillations.   

 
Disturbance rejection 

To observe the performance of proposed control 

structure and PID controller for disturbance rejection,  

a step change on feed composition was applied.  

The information of feed disturbance is presented in Table 7. 

Closed loop response of the system for this disturbance  

is shown in Fig. 13. Simulation results showed that  

the controller works well for disturbance rejection.  

 
ANN controller 

To control the process using ANN controller, Neural 

Network Model Predictive (NNMP) control method was 

used. Activation function for all neurons in the network 

was hyperbolic tangent and training algorithm was 

Levenberg-Marquardt. Optimum number of neurons  

in hidden layer was obtained as 6 using trial and error.  

A total of 100 input-output data set with time intervals  

of 60s was obtained by applying random changes on furnace 

temperature within the range of 600 to 645K. The 

simulation results are shown in Fig. 14. 

The generated data was used for training of NNMP 

controller and then the trained network was used for the 

control of fixed-bed reactor. The parameters of 

optimization module are shown in Table 8. 

 
Set point tracking 

Set point tracking capability of trained NNMP 

controller was investigated by applying a step change  

on set point of maximum temperature inside the reactor.  

Fig. 15 indicates the results showing favorable 

performance of ANN controller. For clarity, the response 

of control system with PID controller is also shown on 

the figure. The response of control system with NNMPC 

represents a small offset because it doesn't have any 

integrator and acts similar to a PD controller, while PID 

controller has an integrator and won't have any offset. 

Table 9 compares closed-loop responses of PID and 

NNMP controllers for set-point tracking. As it is evident, 

PID controller has smaller rise time and settling time, 

while NNMP controller responds with smaller overshoot 

and has a small offset of about 1 K. 
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Table 7: Specifications of disturbance in feed composition. 

Component Weight percent at t<0 Weight percent at t=0.5 min Weight percent at t=40 min 

CH3OH 75 70 77.5 

H2O 25 30 27.5 

 

Table 8: Parameters of optimization module of NNMP controller used in this study. 

Sampling time (s) Prediction horizon Control horizon 

1 8 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14: Input-output data generated by simulation and used for training NNMPC. 

 

Disturbance rejection 

NNMP controller was used for rejection of 

disturbance described in Table 7 whose results are shown 

in Fig. 16. For comparison, results of disturbance 

rejection using PID controller are also shown on the 

figure. As can be seen, NNMPC hasn't been able to 

remove disturbance completely while PID has removed 

it. But, NNMPC has a smaller response time for first 

applied disturbance and smaller overshoot compared  

to the response of PID controller. 

 

CONCLUSIONS 

In this paper, modeling, simulation and control of  

a Methanol-To-Olefins (MTO) laboratory fixed-bed reactor 

with electrical resistance furnace was investigated in both 

steady-state and dynamic conditions. At steady-state  

the effect of three parameters including feed composition, 

inlet temperature and electrical resistance furnace 

temperature on reactor performance was studied. Then, 

after investigating dynamic behavior of the reactor by 

dynamic simulation, a control system was designed for 

the control of the reactor based on the open-loop response 

of the processing system. PID and NNMP controllers 

were used for process control and their performances 

were compared to each other. Results of this work can be 

abstracted as follows: 

1. The kinetic model used in this study gives a good 

approximation of reactor performance. 

2. Simulation results showed that the rates of 

exothermic reactions at beginning of the reactor are very 

high and main products are produced in this section. 

3. Increasing inlet composition of water, decreased 

maximum temperature inside the reactor. 

4. Increasing inlet temperature caused slight reduction 

of main products namely ethylene and propylene. 

5. Location of maximum temperature inside the 

reactor moved towards the inlet of the reactor as the inlet 

temperature increased. 

6. PID controller had smaller rise time, larger 

overshoot and faster response compared to NNMPC with 
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Table 9: Comparison of closed loop response of PID and NNMP controllers for set-point tracking. 

Dynamic characteristic PID controller NNMP controller 

Offset (K) 0 1 

Rise time (min) 6.28 10.83 

Overshoot (%) 41.67 29.91 

Peak response time (min) 11.58 16.83 

Settling time (min) 29.75 33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15: Set-point tracking of closed-loop system for control of 

maximum temperature inside the reactor using PID and 

NNMP controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16: Feed composition disturbance rejection of closed-loop 

system for control of maximum temperature inside the reactor 

using PID and NNMP controllers. 

 

no offset, while NNMPC had smaller overshoot and 

offset was about 1 K for set-point tracking. Also, tuning 

of PID controller is easier and its response has no offset. 

 

Symbols 

A                             Cross sectional area of the reactor, m2 

Ci             Concentration of ith chemical species, kmol/m3 

ig

pi
C            Ideal gas heat capacity of ith chemical species,  

                                                                              J/kmol.K 

Cpcat.                             Heat capacity of catalyst, J/kmol.K 

d                                                          Reactor diameter, m 

dp                       Average diameter of catalyst particles, m 

Ej                        Activation energy of jth reaction, J/kmol 

Fi              Molar flow rate of ith chemical species, kmol/s 

Hj         Heat of reaction of jth chemical reaction, J/kmol 

Kp                                                                    Process gain 

kj                             Reaction rate constant for jth reaction 

kj0                   Pre-exponential term in Arrhenius equation  

                                                                     for jth reaction 

m                                   Number of reactions, equals to 53 

ms                           Number of chemical species including  

                                                  intermediates, equals to 36 

ri                      Rate of production of ith chemical species,  

                                                        kmol/(m3 of catalyst).s 

R                            Universal gas constant, 8314 J/kmol.K 

Rj                                          Rate of jth chemical reaction,  

                                                        kmol/(m3 of catalyst).s 

RM                                          Logarithmic mean radius, m 

T                                                     Reactor temperature, K 

Ta                   Electrical resistance furnace temperature, K 

Taref                      Reference value for electrical resistance  

                                                        furnace temperature, K 

u                                             Superficial gas velocity, m/s 

U                       Overall heat transfer coefficient, J/m2.s.K 

z                                                           Axial coordinate, m 
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Greek Symbols 

conv.            Convective heat transfer coefficient, J/m2.s.K 

ra                                  Radiative heat transfer coefficient  

                                                 through gas layer, J/m2.s.K 

W,eff       Effective wall heat transfer coefficient, J/m2.s.K 

                                                     Glass wall thickness, m 

                                                                     Void fraction 

                                                          Effectiveness factor 

eff        Radial effective conductivity of the bed, J/m2.s.K 

W                                            Wall conductivity, J/m2.s.K 

g                                                       Gas viscosity, kg/m.s 

vij                      Stoichiometric coefficient of ith chemical  

                                          species in jth chemical reaction 

g                                                           Gas density, kg/m3 

cat.                                                 Catalyst density, kg/m3 

                                         Time constant of the process, s 

d                                                                    Time delay, s 

                                                                   Damping ratio 

 

Appendix A 

Reaction network for MTO process proposed by [19] 

with some modifications for abstraction 

Methanol reactions: 

3 2
CH OH CO 2H   

3 3 3 2
2CH OH CH OCH H O   

3 3 2 2
CH OCH 2:CH H O    

 

Light olefins formation: 

2 3 2 4 2
:CH CH OH C H H O   

2 3 3 2 4 3
:CH CH OCH C H CH OH   

2 3 3 3 6 2
:CH CH OCH C H H O   

 

Higher olefins formation: 

2 n 2n n 1 2n 2
:CH C H C H n 2,3,4,5,6

 
     

 
Methane formation: 

2 2 4
:CH H CH    

Carbenium ions formation from olefins: 

A H

2 2n n 2n 1
A

C H C H n 2,. . . ,5
 



 




   

 

Higher Olefins Formation by Carbenium ions: 

A

n 2n 1 3 6 2n 4nA H
C H C H C H n 3,4



 



 
    

A

n 2n 1 2 4 n 2 2n 4A H
C H C H C H n 4,5



 



  
    

 

Paraffins formation: 

A

n 2n 1 m 2m n 2 2n 2 m 2m 2A H
C H C H C H C H



 



   
    

n 3,4,5 , m 6,7   

 

Cyclodienes formation: 

A

n 2n 1 m 2m 4 n 2n 2 m 2m 4A H
C H C H C H C H



 



   
    

n 3,4,5 , m 6,7   

 

Aromatics formation: 

A

n 2n 1 m 2m 4 n 2n 2 m 2m 6A H
C H C H C H C H



 



   
    

n 3,4,5 , m 6,7   

 

Aromatics condensation: 

6 6 10 8 2 4
2C H C H C H    

6 6 9 8 2 4
2C H C H C H C    

 

Aromatics alkylation: 

3 n 2n 6 n 1 2n 4 2
CH OH C H C H H O , n 6,.. .11

  
      

3 n 2n 12 n 1 2n 10 2
CH OH C H C H H O , n 10,11

  
   

 

 

Paraffins demethanization: 

n 2n 2 n 1 2n 2 4
C H C H CH , n 5,4,3

  
  
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