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ABSTRACT: The current method for composition measurement of an industrial distillation column 

includes an offline method, which is slow, tedious and could lead to inaccurate results. Among 

advantages of using online composition designed are to overcome the long time delay introduced  

by laboratory sampling and provide better estimation, which is suitable for online monitoring 

purposes. This paper presents the use of an online dynamic neural network to simultaneously 

predict n-butane composition of the top and bottom products of an industrial debutanizer columns. 

Principal component and partial least square analysis are used to determine the important 

variables surrounding the column prior to implementing the neural network. It is due to the 

different types of data available for the plant, which requires proper screening in determining  

the right input variables to the dynamic model. Statistical analysis is used as a model adequacy test 

for the composition prediction of n-butane in the column. Simulation results demonstrated that  

the Artificial Neural Network (ANN) can reliably predict the online composition of n-butane of  

the column. It is further confirmed by the statistical analysis with low Root Mean Square Error (RMSE) 

value indicating better prediction. 

 

 

KEYWORDS: Principal component analysis; Partial least square analysis; Neural network; 

Debutanizer column. 

 

INTRODUCTION 

Distillation column is one of the important unit operations 

in the downstream process industries. In the 20th century,  

 

 

 

distillations are widely used for separating liquid mixtures  

of chemical compounds. In petroleum downstream  

 

 

 

* To whom correspondence should be addressed. 

+ E-mail: mohd_azlan@um.edu.my 
1021-9986/2017/2/153-174      22/$/7.20 

 



Iran. J. Chem. Chem. Eng. Nasser Mohammed Ramli et al. Vol. 36, No. 2, 2017 

 

154 

process alone, an approximately two thirds of the energy 

for distillation is consumed where distillation is favorable 

for separating crude oil into petroleum fractions, light 

hydrocarbon and aromatic chemicals [1]. The separation 

of other chemical compounds, often in the presence  

of water, is a common practice in the chemical industry. 

The success of a distillation column as a method of 

separation is due to its operational flexibility. Inferential 

estimator is based on heuristic model of the process and 

can be based on availability of measurement and 

multivariate regression technique. This modeling 

approach is preferred since online prediction can provide 

a fast and accurate response.  

In a distillation column, proper control strategies  

are selected through appropriate implementation. This is 

very important because controller has significant effect 

on product quality, production rate, and energy usage.  

In a distillation process, controlling a column is challenging 

since it involves nonlinearities, dual composition control 

and disturbances. In refining industries, the product 

quality of a debutanizer column is always the main focus 

of its operation [2, 3]. Several alternative column 

configurations have been developed, to control 

temperature of the column. For example, dual 

temperature control method is achieved by combining  

the middle and top temperature change to control the state 

switch of the total reflux and withdrawal during  

the operation [4]. Composition prediction based on tray 

temperatures is typically used in industries by controlling 

tray temperatures [5]. The steady state and dynamic 

process could be characterized for product variability 

prediction. These characteristics were used to generate  

a linear dynamic tray-to-tray model for a distillation 

column [6]. 

Dynamic Principal Component Analysis (PCA) 

consider the dynamic process by introducing time lagged 

variables into the inferential models. The dynamic 

methods are suitable for processes with long time delays 

and varying throughputs on process variables [7]. 

Secondary variables are sensitive to primary variables 

when implementing inferential estimator in achieving  

the column optimum performance. As there are many 

possible locations of the temperature sensor for a column, 

the selection of the secondary variables as inputs 

becomes difficult [8]. PCA properties are measured  

by extracting the input variable for the online 

implementation. Many approaches have been studied  

to build a secondary variable model from readily available 

measurements such as tray temperatures to replace  

the quality measurements. A secondary variables approach 

has been studied for use when quality measurements  

are not available and a multivariate statistical control 

proposed [9].  

Composition of a distillation column requires  

an online estimation measurement. Temperature is the main 

variable that will affect the composition for the column. 

Therefore temperature gives tight control on product 

composition despite wide variation such as internal reflux 

ratio. A simple feedback loop will give good control 

when composition of only one stream is important.  

When monitoring or controlling both top and bottom 

compositions simultaneously, a simple feedback loop  

is unfavorable due to interactions of the two loops.  

With neural network, it is possible to monitor composition 

at both ends of the column.  Neural network techniques 

have been increasingly used for a wide variety of 

applications where statistical method had been 

traditionally employed. Neural network is able to give 

better prediction of important parameters and be applied 

to wide range of problems [10].  

Artificial Neural Network (ANN) is a powerful tool to 

model non-linear process in refinery. ANN is a black box 

where no priori knowledge for a system is required. ANN 

has the ability to learn a relationship between the outputs 

and the inputs for a system. To develop a process using 

ANN, it requires suitable network architecture and 

appropriate data training. The neural network architecture 

makes use of many hidden layers for the column and  

the inputs only consider temperature surrounding  

the column [11]. To improve product quality in a debutanizer 

column, soft sensor design has been used. The dynamic 

neural model that has been implemented used three steps 

predictions to evaluate its top product concentration.  

The output from the first dynamic network are fed to input 

of the second dynamic network and the output from  

the second dynamic network are fed to the third dynamic 

network to obtain the desired product. The approach uses 

appropriate lagged inputs including composition to the 

neural network.  

Real time estimation of plant variables and the 

composition are used for monitoring purposes and  

the number of neurons in the hidden layer for the neural 
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network is determined by trial and error method [12].  

The Levenberg–Marquardt (LM) algorithm for neural network 

training has been used because it is suitable for binary  

as well as multi-component mixture. The LM algorithm 

is more suitable compared to Steepest Descent Back 

Propagation (SDBP) algorithm in both cases and give 

more accurate and sensitive results. The LM approach  

has proven worked efficiently in complex chemical plants, 

having hundreds of parameters [13]. Neural network 

gives better performance than the conventional control 

loop and inferential control by developing a model based 

on neural control for single composition. The strategy  

is used to compensate the upsets in the operating pressure, 

feed flow rate, and feed composition. To keep the content 

of the key component in the distillate stream, the 

performance of the neural network has to be precise [14]. 

ANN has also been applied in a crude fractionation 

section. Back propagation algorithm is used on real time 

data and the output of the neural network prediction is  

the naphtha temperature and not the composition prediction. 

However, the proposed method is only used for the 

product quality determination [15].  

   An optimization framework to obtain optimal 

operation of dynamic processes under process-model 

mismatches has been developed. In order to model these 

mismatches, neural network have been utilized.  

To demonstrate the technique, a batch distillation process 

is used. For simplicity, they consider binary  

batch distillation with only one specified product [16].  

A framework is proposed to optimize the operation of 

batch columns. The proposed framework uses  

ANN based process model to be employed by the optimizer. 

The optimization of a pilot-plant middle-vessel batch 

column has been considered. The maximum-product 

problem is formulated and solved by optimizing the column 

operating parameters, such as the batch time, the reflux 

and reboil ratios. ANN based model is capable of 

reproducing the actual plant dynamics with good accuracy, 

and allows a large number of optimization studies to be 

carried out with little computational effort [17]. 

The main contribution of the work in this paper is  

the use of online closed loop and open loop data for training 

the neural network. The close loop data has been 

extracted to obtain the open loop data, which is then used 

for training, validation and testing. In this study, column 

information was obtained from the actual measurement 

over a 4 year period in the oil refinery industry. PCA  

is one of the criteria to describe a remarkably simple 

approach to multivariate analysis based on projection 

methods. The projection approach can be adapted to  

a variety of data analytical objectives such as summarizing 

and visualizing a data set, multivariate classification and 

discriminant analysis and finding quantitative 

relationship among the variables. Projection methods  

can be made robust to outliers, deal with non-linear 

relationship and adapt to drift in multivariate process 

data. Furthermore the application of principal component 

and partial least square analysis are used to determine the 

important variables surrounding the column prior  

to implementing the neural network which is vital. This is 

because there are different types of data available for  

the plant, which requires proper screening to determine 

the right input variables to the dynamic model. In addition, 

this work also involves a single dynamic neural network 

model with lagged inputs to predict the top and bottom 

composition simultaneously. Statistical analyses are used 

as a model adequacy test for composition prediction of  

n-butane in the column. Neural network modeling is a good 

strategy for large industrial application when online 

estimation is required for monitoring purposes. The 

online measurement provide good estimate to overcome 

delay introduced by laboratory sampling.     

 

PLANT AND DEBUTANIZER COLUMN 

DESCRIPTION 

The plant under study is for offshore crude oil  

to produce high value petroleum products for domestic 

and export markets. The plant consists of a refinery process 

and involves in condensate fractionation and reforming 

aromatics processes. The feed stocks of the oil refinery 

are crude oil while the products are petroleum products, 

liquefied petroleum gas, naphtha and low sulphur waxy 

residue. The refinery has two main process units, which 

are the Crude Distillation Unit (CDU) and Catalytic 

Reforming Unit (CRU). The crude oil is preheated using 

heat exchangers to 190oC – 210oC. Subsequently, the 

stream is then further heated in a furnace at 340oC – 

342oC to achieve a desired temperature for better 

separation at the CDU. The crude is then routed to the 

CDU before being split into a number of fractions which 

are Heavy Straight Run Naphtha (HSRN) as overhead 

vapor, untreated kerosene, straight run kerosene and
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straight run diesel. From the crude tower, there are  

3 sides cut streams, which are drawn to a stripper column. 

The stripper consists of naphtha stripper, kerosene 

stripper and diesel stripper. 

The feed of Heavy Straight Run Naphtha (HSRN) 

from the CDU is mixed with hydrogen from the reformer 

and heated up to the reaction temperature using a heater 

and fed into a pretreater catalytic reactor. The products 

from the reactor is sent to the pretreater stripper.  

The bottom product of the stripper is sent to the reforming 

unit as feed. The treated naphtha is heated to reaction 

temperature and fed to the reforming reactors. Effluent 

from the reactor is cooled and collected in a reformer 

separator. One part of the gas, which is separated, is sent 

to an absorber. In the absorber, hydrogen gas is purged 

and recycled to the pretreater heater as the hydrogen 

make-up for the raw naphtha feed. The liquid fraction  

is pumped into a stabiliser. The reformate is withdrawn 

from the stabiliser bottom and cooled before being 

transferred to storage. Overhead vapor from the stabiliser 

are cooled, condensed and recovered from the stabiliser 

reflux drum. In the current work, we are focusing on the 

debutanizer column. 

The debutanizer column is located at the CDU 

section. The unit is used to recover light gases and LPG 

from the overhead distillate before producing light 

naphtha. The light gases mainly C2 are used to refine fuel 

gas and mixed LPG to LPG storage. The unit operation  

at the LPG section includes the Deethanizer and 

Debutanizer columns. The recovery unit is used to 

process unstable product from the top unit section 

together with unstable LPG from the reformer. 

Deethanizer bottom product enters as feed to the 

debutanizer column. The debutanizer column has  

35 valve trays (one liquid pass). Low boiling point 

components rise up the tower in contact with the internal 

reflux. The high boiling point of heavy component flow 

down in contact with vapor produced in the debutanizer 

reboiler. Overhead vapor is then condensed by the 

debutanizer condenser. The overhead system is set and 

controlled by the debutanizer overhead pressure control 

valves which have two split ranges control.  

Part of the collected condensed hydrocarbon  

is routed to the top of the debutanizer as reflux. The flow 

is measured by the reflux flow meter. The debutanizer 

bottom section is provided by the debutanizer reboiler  
 

Table 1: Column specification. 

Number of tray of the column 35 

Feed tray - stage number 23 

Type of tray used Valve 

Column diameter 1.3 meter 

Column height 23.95 meter 

Condenser type Partial 

Feed mass flowrate 44106 kghr-1 

Feed temperature 113 0C 

Feed pressure 823.8 kPa 

Overhead vapor mass flowrate 11286 kghr-1 

Overhead liquid mass flowrate 5040 kghr-1 

Condenser pressure 823.8 kPa 

Reboiler pressure 853.2 kPa 

 

to strip the light component. The reboiler temperature  

is controlled by the debutanizer reboiler control valve while 

the bottom product level is controlled by the debutanizer 

bottom level controller. Table 1 outlines the column 

specification and Table 2 describes the tag name 

surrounding the column. Fig. 1 shows the flow chart  

for the refinery process and Fig. 2 shows the column 

configuration for the debutanizer column. The objective 

of this case study is to estimate the top and bottom 

compositions of n-butane for the debutanizer column 

using a single neural network model based on a mix of 

industrial and simulation data. The methodology applied 

will be described in the next section. 

 

METHODOLOGY 

Data generation 

Although most online open loop response data from 

the plant surrounding the column is available, some  

of the variables in open loop surrounding the column  

are not available. Such data include Temp 5, Pressure 1 and 

compositions at both ends of the column. Therefore plant 

process simulation of the debutanizer column is performed
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Table 2: Tag name description of the column. 

Tag Description Units 

Temp 1 Debutanizer top temperature oC 

Temp 2 Debutanizer bottom temperature oC 

Temp 3 Debutanizer receiver bottom temperature oC 

Temp 4 Light Naphtha temperature after condenser E 1 oC 

Temp 5 Reboiler outlet temperature to column oC 

Temp 6 Debutanizer feed temperature oC 

Level 1 Debutanizer level % 

Level 2 Debutanizer condenser level % 

Level 3 Debutanizer level indicator % 

Level 4 Condenser level indicator % 

Flow 1 Light Naphtha flow to storage m3/hr 

Flow 2 LPG flow to storage m3/hr 

Pressure 1 Debutanizer receiver overhead pressure kPa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Flow chart for the refinery process. 
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Table 3: Controller setting and set point. 

 Kc Ti Td Set point 

Flow 1 0.5 30 0 44.64 m3/hr 

Reflux flow 0.285 50 0 24 m3/hr 

Temp 5 0.4 80 20 135.7 oC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Debutanizer column configuration. 

 

to obtain the unavailable open loop data sets from  

the plant. The online and simulated close loop response 

of the compositions of n-butane at the top and bottom  

of the column were also established to obtain the unmeasured 

data. The simulation environment consists of a worksheet 

and Process Flow Diagram (PFD). The worksheet 

contains information on each flow and heat stream 

involved in the simulation. Comparison between the close 

loop responses in simulation to the actual plant from 

laboratory sample is performed to evaluate the deviation 

between the simulated and actual compositions,  

to ascertain that the simulation data available closely 

resemble the actual online industrial data. 

Online close loop data for top and bottom 

compositions n-butane are available for the column which 

are obtained from laboratory sample (gas chromatographs) 

while the close loop data could be extracted to open loop 

since the controller setting and set point data are 

available. Table 3 shows the set point and controller 

settings for Flow 1, reflux flow and Temp 5.   

The PID equation is used to determine the controller 

output (manipulated variable) derived from reference [18] 

as given below; 

t

c D0
i

1 de(t)
MV K e(t) e(t)

dt

 
    

  
                         (1) 

The tuning parameter is used to determine the process 

gain, Kp [19] as shown below; 

p c
K 3K                                                                        (2) 

Equations 1 and 2 were used to extract the close loop 

data to determine the process variable Temp 5 and 

manipulated variable of the reboiler and reflux 
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Fig. 3: Flow chart to extract close loop to obtain open loop data. 

 

respectively are called MV2 and MV3. The manipulated 

variable reboiler flow rate could be obtained from Temp 5 

which is applied to regulate the particular process 

variable. Equation 2 has been used to determine the 

process gain from the controller gain, Kc. Process variable 

for Flow 1, reflux flow and Temp 5 can be determined 

when the process gain, Kp and the change of the 

manipulated variable, MV are calculated. Fig. 3 shows 

the procedure to extract the close loop data. There are 

three types of data. The first is the online open loop data. 

The second is the data extracted online in close loop and 

the last is the simulation data. These three data are 

combined together for training, validation and testing of 

the neural network model.   

 

Principal component (PCA) and Partial Least Square (PLS) 

Analysis 

PCA and PLS analysis are used prior to utilizing 

neural network to determine the important variables  

to be analyzed for composition prediction as this is crucial 

since there is a large number of variables surrounding  

the column. The PCA and PLS analyses will also determine 

the inputs to the neural network.   

PCA is used to analyze all variables surrounding  

the column outlined in Table 4. If a correlation exists 

between the variables, small number of principal 

components will summarize a majority of the variation  

in X. To analyze the changes in the original data space, 

changes occurring within the principal components 

should be used. From the PCA, the important variables 

surrounding the column are determined. Partial Least 

Square (PLS) is used to relate the important variables 

from PCA with respect to the top and bottom compositions  

of n-butane. PLS regression is a method that generalizes 

and combines features from principal component analysis 

and multiple regressions. It is normally useful to predict  

a set of dependent variables (Y) from a large set of 

independent variables or predictors (X).  

The data set which obtained from open loop online 

and simulation are combined together. SIMCA-P is used 

to perform PCA and PLS analysis for the debutanizer 

column. There are 2 important variables, which are  

the primary and observation variable. The primary variable 

consists of 23 variables surrounding the column while  

the observation variables are the top and bottom n-butane 

compositions. The observation variable is the number of 

observations established once the worksheet has been developed. 

Then PCA model is fitted to these data. 

Table 4 shows the important variables involved  

in the PCA analysis for open loop response of the reboiler 

flow rate and reflux flow rate data set obtained from the plant 

and simulation. The simulated data are Temp 5, Pressure 

1 and open loop compositions. The rest of the variables 

are obtained from the actual plant. The variables ‘a’ to 

‘m’ are the important variables surrounding the 

debutanizer column where the variables ‘n_top’ to 

‘r_bottom’ are the compositions at the top and bottom of 

the column. 

From the PCA, variables which are not important  

are excluded while the important variables are analyzed 

again with respect to the top and bottom compositions n-butane 

using PLS. For PCA, component contribution plot are 

used to analyze all the important variables surrounding 

the column.   

Table 5 shows the important variables involved in the 

PLS analysis where the manipulated variable is the 

reboiler flow rate. Table 6 shows the important variables 

involved in the PLS analysis where the manipulated 

variable is the reflux flow rate. Data is arranged 

according to Tables 5 and Table 6 for PLS analyses  

to further study the importance of the variables surrounding

Determine the error 

e= set point – measurement process variable 

 

Calculate the controller output change of the 

manipulated variable, MV 

Calculate change of the process variable, 

PV 

 

dand T i, TcDetermine K 

 

Obtain open loop 

data 
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Table 4: Important variables for PCA model. 

Temp 1 a Debutanizer top temperature 

Temp 2 b Debutanizer bottom temperature 

Temp 3 c Debutanizer receiver bottom temperature 

Temp 4 d Light Naphtha temperature after condenser E121 

Temp 5 e Reboiler outlet temperature to column 

Temp 6 f Debutanizer feed temperature 

Level 1 g Debutanizer level 

Level 2 h Debutanizer condenser level 

Level 3 i Debutanizer level indicator 

Level 4 j Condenser level indicator 

Flow 1 k Light Naphtha flow to storage 

Flow 2 l LPG flow to storage 

Pressure 1 m Debutanizer receiver overhead pressure 

Component 1 n_top Top composition propane 

 n_bot Bottom composition propane 

Component 2 o_top Top composition  i-butane 

 o_bot Bottom composition i-butane 

Component 3 p_top Top composition  n-butane 

 p_bot Bottom composition n-butane 

Component 4 q_top Top composition  i-pentane 

 q_bot Bottom composition i-pentane 

Component 5 r_top Top composition  n-pentane 

 r_bot Bottom composition n-pentane 

 

Table 5: Important variables for PLS model (reboiler flow rate as manipulated variable). 

Temp 1 a Debutanizer top temperature 

Temp 2 b Debutanizer bottom temperature 

Temp 5 e Reboiler outlet temperature to column 

Flow 1 k Light Naphtha flow to storage 

Component 3 p_top Top composition of n-butane 

 p_bot Bottom composition of n-butane 
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Table 6: Important variables for PLS model (reflux flow rate as manipulated variable). 

Temp 1 a Debutanizer top temperature 

Temp 2 b Debutanizer bottom temperature 

Temp 5 e Reboiler outlet temperature to column 

Flow 2 l LPG flow to storage 

Pressure 1 m Debutanizer receiver overhead pressure 

Component 3 p_top Top composition of n-butane 

 p_bot Bottom composition of n-butane 

 
the column. For PLS analysis, variable important plot  

are used to determine variables which are important  

with respect to the n-butane composition. From the PCA 

and PLS analyses, component contribution plot and variable 

important plot are used to identify the variables that are 

important to be selected the right inputs for neural 

network. 

 

Neural network design 

The online compositions at the top and bottom of  

the column in the refinery is currently measured using 

normal laboratory sampling. This is tedious and  

the results could not be obtained immediately therefore 

neural network are used as a benchmark because it is able 

to predict the composition faster with more accuracy and 

precision and could also handle non-linearities in the 

process variable surrounding the column as proposed  

in this study.  

Open loop response of the reboiler and reflux data, 

which includes the composition of n-butane, are used  

to develop the dynamic neural network architecture.  

The selected input variables to the network including  

the composition of n-butane are time delayed while  

the outputs are the future predictions of n-butane.  

The type of dynamic network used for training, validation 

and testing the data set are nonlinear autoregressive 

network with exogenous inputs (NARX) with series-

parallel architecture. The training algorithm used is the 

Levenberg-Marquardt method. Early stopping criteria  

are implemented to train the network while the performance 

function used is the mean square error.    

These data sets are partitioned into three sets,  

which are the training, validation and test set. In the 

network, the number of layers used is 3 with only 1 

hidden layer. The number of hidden layer is determined 

using statistical analysis and it is described in next section. 

The number of inputs to the network is 12 while  

the outputs are 2 (compositions of top and bottom).  

The transfer function to train the network is purelin (linear) 

for the entire layer and the networks are trained to predict 

simultaneously the top and bottom compositions of  

n-butane. Table 7 shows the important variables in the 

neural network where the data set are combined with  

the manipulated reboiler flow rate and reflux flow rate 

changes for n-butane after performing the PCA and PLS 

analyses. 

Fig. 4 shows the neural network architecture for  

the n-butane composition prediction where the inputs for 

the neural network are from mv2 (k) to p_bot (k-1) while 

the outputs are the variable p_top (k+1) and p_bot (k+1). Fig. 5 

shows the general procedure in developing the neural 

network architecture. Prior to implementing the neural 

network, the data are arranged by combining the open 

loop response from the simulation and online data.  

The data set are then trained until the network reaches  

its epoch and meet its performance criteria. The data set 

are also validated and tested after the network is trained. 

Since the extracted close loop data are available, the data 

are replaced as inputs to the neural network in the 

validation and test set by maintaining the actual 

architecture that are trained for the open loop response.  

 
Model adequacy test for neural network to determine 

the hidden layer 

To determine the number of neurons in the hidden 

layer, the following criteria is analyzed to determine the 

accuracy performance of the network using statistical 

analysis. The error is estimated using the Root Mean 

Square Error (RMSE) method given as, 
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Table 7: Important variables for neural network prediction. 

MV2 mv2 (k) Manipulated reboiler flow rate 

 mv2 (k-1) Lag MV2 

MV3 mv3 (k) Manipulated reflux flow rate 

 mv3 (k-1) Lag MV3 

Temp1 a (k) Debutanizer top temperature 

 a (k-1) Lag Temp 1 

Temp 5 e (k) Reboiler outlet temperature to column 

 e (k-1) Lag Temp 5 

Component 3 p_top (k) Top composition n-butane 

 p_top (k-1) Lag top composition 

 p_bot (k) Bottom composition n-butane 

 p_bot (k-1) Lag bottom composition 

 p_top (k+1) Future predictions n-butane top composition 

 p_bot (k+1) Future predictions n-butane bottom composition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Neural network architecture for n-butane. 

mv2(k) 
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Fig. 5: Procedure of the neural network architecture. 
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
                             (3) 

Correct Directional Change (CDC) measures the 

capacity of a model to accurately predict the subsequent 

actual change of a predicted variable. The formula of 

CDC is defined as: 

N

i
i

100
D

N
                                                                        (4) 

where formula of Di is defined as: 

i i
y y  

The best known information criteria are the Akaike 

Information Criterion (AIC) and Bayesian information 

criteria (BIC): 

2 2K
AIC MSE

T
                                                      (5) 

2log(N) 2K
BIC MSE

T


                                           (6) 

The coefficient of determination is defined as: 

T
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t t
2 t L

T
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t
t L
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(y y)







 




                                                     (7) 

Mean Absolute Percentage Error (MAPE) is the 

measure of accuracy in a fitted time series value given as: 

N
t t

i 1 t

| F A |1
MAPE 100%

N A


                                     (8) 

Pearson correlation coefficient (Cp), measures  

the goodness of fit of the regression given as: 

S

S S

N

p, j a, jp, j a, j
j 1

p N N
2 2
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j 1 j 1
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(E E ) (E E )
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 



 

                        (9) 

The number of neurons in the hidden layer is determined 

from a range of 8 to 40. Fig. 5a shows the profile  

of the RMSE with respect to number of hidden nodes. 

Using the statistical analysis described above,  

with the following the deviation between actual and 

Obtain data for training and  

Validation in Excel interface with 

MATLAB 

Choose suitable input/output  

to the network 

Choose dynamic neural network 

architecture 
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early stopping training algorithm until 

training parameter goal has been met 
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Fig. 5a: Profile of the RMSE with respect to number of 

hidden nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6: Temp 1 Debutanizer top temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7: Level 1 Debutanizer level. 

composition prediction by neural network are determined 

with the following set of criteria; low RMSE, CDC 

approaching 100, small AIC and BIC, R2 approaching 1, 

low MAPE and CP approaching 1. Equations 3 – 9  

are obtained from reference [20-22]. Based on the set criteria, 

the best neural network architecture is determined.  

The number of hidden nodes for the optimum neural network 

model has been found to be 22.  

 

RESULTS AND DISCUSSION 

Step test reboiler flow rate 

To generate the input-output data for the neural 

network training, various step changes are applied to the 

inputs to obtain the corresponding outputs. The inputs for 

the system in this case is the reboiler flow rate and reflux 

flow rate. Figs. 6 to 9 show some of the step tests for  

the reboiler flow rate data sets. The step test of the reboiler 

flow rate, which is the manipulated variable, is generated 

by using multi amplitude rectangular pulse. The step test 

is important to determine the effect and fluctuations of 

the process variable when performing changes to the 

reboiler flow rate. 

 

Step test reflux flow rate 

Figs. 10 to 13 describe some of the step tests for  

the reflux flow rate data which demonstrates the effect 

and the fluctuations of the process variable when performing 

changes to the reflux flow rate. The fluctuations of the 

process variables will start to increase and decreases  

as the step test of the reflux flow rate changes. The step test 

of the reflux flow rate, which is the manipulated variable, 

is generated by using multi amplitude rectangular pulse. 

 

Validation of online data with simulation data for 

composition 

Figs. 14 and 15 represent the compositions at the top 

and bottom of n-butane from there Root Mean Square 

Error (RMSE) could be calculated for top and bottom 

compositions are 0.0251 and 0.008184 respectively.  

It indicates that there is small deviation between the online 

and simulation data. This implies that the simulation and 

close loop data agree well with each other including  

the variables that are not available from the open loop 

response for the plant. Once the close loop has been 

verified, then the open loop response for variable that  

is not available from plant can be obtained. The same step 
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Fig. 8: Flow 1 Light Naphtha flow to storage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9: Pressure 1 Debutanizer receiver overhead pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10: Temp 1 Debutanizer top temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11: Level 1 Debutanizer level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 12: Flow 1 Light Naphtha flow to storage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 13: Pressure 1 Debutanizer receiver overhead pressure. 
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Fig. 14: Top composition n-butane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 15: Bottom composition n-butane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 16: Flow 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 17: Temp 5. 

 
size for the manipulated variable for reboiler and reflux 

from plant are performed as inputs to obtain the 

fluctuation of the process variable as outputs in the 

simulation. 

 

Extracted close loop data 

Figs. 16 and 17 show the fluctuations of the two 

process variables that are in close loop response 

compared to the extracted closed loop. The fluctuations 

of the variables show a variation between close loop and 

data extracted from close loop. Flow 1 is controlled using 

PI and Temp 5 is controlled by using PID. The step 

change for the Manipulated Variable (MV) for Temp 5 is 

larger than Flow 1. This is because Temp 5 has small error 

with respect to time compared to Flow 1. Flow 1  

has a large error because the variation between  

the fluctuations of the process variable and its set point  

is large compared to Temp 5. The controller setting for 

the plant affects the error to bring the process variables 

close to its set point.  

 

PCA analysis  

Step test reboiler flow rate 

Component contribution plot shows all of the 

important components of the step test reboiler flow rate 

for the top liquefied petroleum gas product and bottom 

light naphtha product. The variables are outlined in Table 4. 

The values of R2 (variation explained) and Q2 (variation 

predicted according to cross validation) are also shown 

for each variable. The variables with high values of R2 
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have large loading values for the selected component. 

The Q2 values indicate the reliability of these R2 and 

loading values. 

The component is considered less important if all of 

the variables have low values of R2 and Q2 in a 

component. This is applicable to variables c, d, f, g, h, i, j, 

l and m as depicted in Fig. 18. The highest value of R2 

and Q2 for variable b is 0.48 and 0.44 respectively. From 

the plot, it could be concluded that variables a, b, e and k 

have high values for R2 and Q2 indicating that these 

components are important for composition prediction of 

n-butane with respect to the reboiler flow rate.   

 

Step test reflux flow rate 

Component contribution plot shows all of the 

important components of the step test reflux flow rate for 

the top liquefied petroleum gas product and bottom light 

naphtha product. The values of R2 (variation explained) 

and Q2 (variation predicted according to cross validation) 

are also shown for each variable. Variables with high 

values of R2 show large loading values for the selected 

component. Q2 value indicates the reliability of these R2 

and loading values. 

If all of the variables show low values of R2 and Q2 

in a component, it indicates that the component is less 

important [23]. This is true for variables c, d, f, g, h, i, j 

and k as depicted in Fig. 19. The highest value of R2 and 

Q2 for variable e is 0.1 and 0.28 respectively. Form the 

plot it indicate that variables b, e, n_top and q_top have 

high values of R2 and Q2. It indicates that these 

components are important for composition prediction of 

n-butane with respect to the reflux flow rate. 

 

PLS analysis for n-butane 

From Fig. 20, the output variable of the PLS analysis 

is the n-butane composition and the input variable is  

the variable Temp 1 to Flow 1 outlined in Table 5. All of 

the variables for level have been excluded from the analysis, 

since level will not affect the fluctuations of the top and 

bottom compositions of n-butane.  

From Fig. 20, the importance of these variables is 

determined by having the y axis value which is the 

Variable Important Plot (VIP) more than 0.5. If the value 

of the bar chart for the particular variable is less than 0.5, 

the variable is not important and it could be excluded 

from the analysis the variables i.e. k, b and e.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 18: Component contribution plot reboiler flow rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 19: Component contribution plot reflux flow rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 20: Step test reboiler variable important plot. 
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From Fig. 21, the output variable of the PLS analysis 

is the n-butane composition and the input variable are the 

variables Temp 1 to Pressure 1 outlined in Table 6. All of 

the variables for the level have again been excluded from 

the analysis. The importance of a variable is considered 

important if its y axis value in the VIP bar chart is more 

than 0.5 [25]. If the value of bar chart of the particular 

variable is less than 0.5, that means the variable is not 

important and the variable could be excluded namely 

variables l, m and b.   

 
Artificial Neural network modeling  

Table 8 shows the summary of the neural network 

architecture for predicting the compositions of n-butane at 

the top and bottom of the column simultaneously.  The data 

are partitioned according to the training; validation and test 

set as shown in Fig. 22. Fig. 22 a shows the training neural 

network by LM. Figs. 23 to 26 show the top and bottom 

compositions prediction of n-butane for validation and 

testing. The amount of data that are partitioned according to 

training is 65%, for validation is 18% and test is 17%. The 

results indicate the RMSE deviation between the open loop 

and the extracted close loop is 8.213  10-10 for the bottom 

composition validation and 0.16  10-9 for the top 

composition validation. The CDC value for bottom 

composition validation and testing are similar. The CDC 

value for top composition validation varies by 1.62 and for 

top composition testing varies by 0.32. The CDC value for 

bottom validation and testing is high calculated to be 100 for 

extract close loop and open loop response. High CDC value 

indicates that prediction by NN is very good. Di is equal to 1 

if  ii yy   is greater than zero. Di is equal to zero if ii yy   

is negative. The high CDC value indicate Di is equal to 1 

based on the prediction is larger than Di which is zero. The 

CDC for top validation and testing is low. This is because Di 

which is zero is larger than Di is equal to 1 and the 

subsequent actual change of the predicted variable is low. 

The regression value of R for top and bottom compositions 

test and validation is 1. Thus the prediction between the 

actual and simulated is similar. The AIC and BIC values for 

open loop for top composition validation are -572 and -564 

respectively. The AIC and BIC values for open loop for 

bottom composition validation are -357 and -349 

respectively. The values are larger compared to extract 

from close loop. The model for extract from close loop 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 21: Step test reflux variable important plot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 22: Manipulated variable reboiler and reflux flow rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 22a: Training neural network by LM. 
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Table 8: Neural network architecture. 

Parameters Description 

Network NARX series parallel network 

Category With partitioning 

Training function Levenberg-Marquardt 

Adaptation learning function Gradient descent 

Performance function MSE 

Epochs 1000 

Goal 1e-6 

Number of layers 3 

Layer 1: Number of Neuron 

Transfer function 

12 

Linear 

Layer 2: Number of Neuron 
Transfer function 

22 
Linear 

Layer 3: Number of Neuron 

Transfer function 

2 

Linear 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 23: Actual and simulated n-butane at the top composition 

for testing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 24: Actual and simulated n-butane at the bottom 

composition for testing. 

 

has low value of the information criteria gives the best 

performance. For the AIC and BIC, low value is preferred 

as it indicates better prediction. This is also applied  

to testing data set. The Akaike information criteria related 

to the square of residual to the number of free model 

parameters. The purpose is to weigh the error of the 

model against the number of parameters. The BIC is 

similar to AIC except that it is motivated by the Bayesian 

model selection principles. Cp value is close to 1. The Cp 

value for validation and test set for bottom and top 

compositions are calculated to be 1 and the MAPE should 

be close to 0. The MAPE values for top and bottom 

composition validation open loop are 1.04  10-6 and -6.4 

 10-6 respectively. The MAPE values are larger 

compared to extract from close loop. This is also applied 

to testing data set for MAPE values. When having a 

perfect fit, MAPE is zero. But in regards to upper level 

the MAPE has no restriction. The percentage error 

calculated for MAPE is to compare the error of fitted  

time series. Table 9 shows the statistical analysis
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Table 9: Statistical analysis of n-butane open loop and extract close loop. 

Parameter Extract Open loop 

rmse_bottom_validation 2.52E-09 3.35E-09 

rmse_top_validation 1.15E-09 1.31E-09 

CDC_bottom_validation 100 100 

CDC_top_validation 17.30 15.68 

R_bottom_validation 1 1 

R_top_validation 1 1 

AIC_bottom_validation -352.80 -357.77 

AIC_top_validation -561.06 -572.12 

BIC_bottom_validation -344.99 -349.89 

BIC_top_validation -553.26 -564.24 

MAPE_bottom_validation -4.67E-06 -6.4E-06 

MAPE_top_validation 9.23E-07 1.04E-06 

Cp_bottom_validation 1 1 

Cp_top_validation 1 1 

rmse_bottom_testing 2.48E-09 3.33E-09 

rmse_top_testing 1.15E-09 1.32E-09 

CDC_bottom_testing 100 100 

CDC_top_testing 16.32 16 

R_bottom_testing 1 1 

R_top_testing 1 1 

AIC_bottom_testing -344.941 -349.38 

AIC_top_testing -479.41 -487.47 

BIC_bottom_testing -337.29 -341.66 

BIC_top_testing -471.76 -479.74 

MAPE_bottom_testing -4.498E-06 -6.20E-06 

MAPE_top_testing 9.46E-07 1.07E-06 

Cp_bottom_testing 1 1 

Cp_top_testing 1 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 25: Actual and simulated n-butane at the top composition 

for validation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 26: Actual and simulated n-butane at the bottom 

composition for validation. 
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Fig. 27: Actual and simulated n-butane at the top composition 

closed loop for testing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 28: Actual and simulated n-butane at the bottom 

composition close loop for testing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 29: Actual and simulated n-butane at the top composition 

close loop for validation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 30: Actual and simulated n-butane at the bottom 

composition close loop for validation. 

 

of n-butane with partition open loop data and extracted 

close loop data. From the statistical analysis, the 

extracted close loop performs better than the open loop 

response because RMSE value is low, CDC is high, AIC 

and BIC is low and MAPE is low.  

 

Validate online based on close loop data 

Validate online prediction for the n-butane is 

implemented to estimate the composition of n-butane  

as the output for the column. The data of the composition 

prediction are partitioned to three sets, which are training, 

validation and testing.  Only the validation and testing 

sets are shown in this paper. The neural network 

architecture for online validation is similar as shown in 

Table 8. The actual composition for n-butane is obtained 

from the laboratory measurement in the refinery plant. 

The required data collected surrounding the column 

consists of the closed loop data. The purpose for validate 

online is to monitor the composition for its precision and 

accuracy. The training data are trained until the epoch 

and the performance has achieved and then the network  

is validated and tested.  

Figs. 27-30 show the top and bottom compositions 

prediction of n-butane for validation and testing.  

The results indicate that the RMSE is low at 3.73  10-9 

for the bottom composition validation data set and 7.16  10-9 
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Table 10: Statistical analysis for composition n-butane 

validation and testing based on closed loop data. 

Parameter Online 

rmse_bottom_validation 3.73E-09 

rmse_top_validation 7.16E-09 

CDC_bottom_validation 98.16 

CDC_top_validation 98.16 

R_bottom_validation 1 

R_top_validation 1 

AIC_bottom_validation -796.17 

AIC_top_validation -505.38 

BIC_bottom_validation -785.36 

BIC_top_validation -494.58 

MAPE_bottom_validation 5.93E-06 

MAPE_top_validation 5.53E-06 

Cp_bottom_validation 1 

Cp_top_validation 1 

rmse_bottom_testing 4.20E-09 

rmse_top_testing 8.06E-09 

CDC_bottom_testing 98.14 

CDC_top_testing 98.14 

R_bottom_testing 1 

R_top_testing 1 

AIC_bottom_testing -750.06 

AIC_top_testing -461.92 

BIC_bottom_testing -739.30 

BIC_top_testing -451.160 

MAPE_bottom_testing 6.65E-06 

MAPE_top_testing 6.23E-06 

Cp_bottom_testing 1 

Cp_top_testing 1 

for the top composition validation data set. On the other 

hand the CDC is high for the top and bottom 

compositions for validation at 98.16. The high CDC 

values indicate Di is equal to 1 based on the prediction  

is larger than Di which is zero. The CDC is also high  

for testing data sets. The regression value of R is 1, thus 

the prediction between the actual and simulated is similar for 

validation and testing data sets. The AIC and BIC values 

for online top composition validation are -505 and -494 

respectively. The AIC and BIC values for online bottom 

composition validation are -796 and -785 respectively. 

For the AIC and BIC, low value is preferred as it 

indicates better prediction also applies to testing data set. 

The MAPE values for top and bottom composition 

validation online are 5.53 10-6 and 5.93  10-6 

respectively.  The MAPE should be close to 0 and this 

also applies to testing data set. Cp values are close to 1. 

The Cp value for validation and test set for bottom and 

top composition are calculated to be 1. Table 10 shows 

the statistical analysis for the n-butane composition 

prediction validation and testing based on close loop data. 

Figs. 31-32 show the residual analysis of n-butane for 

testing and validation data set for top and bottom 

composition. From the analysis it can be concluded that 

the residual is very small and hence the prediction 

obtained for the neural network estimation is highly accurate. 
 

CONCLUSIONS 

This paper presents a case study in utilizing a neural 

network model to estimate the top and bottom 

compositions of a debutanizer column. The use of online 

close loop data, open loop data and simulation data 

makes the model robust and highly suitable for online 

use. PCA and PLS analyses have also been found  

to facilitate the correct and right inputs of the variables 

for the column since a large amount of data are available 

from the industry. 

The neural network prediction of n-butane gives high 

accuracy and the error between the prediction and actual 

composition is small and this will ensure that neural 

network can also be used as an inferential estimator for 

composition estimation online. From the statistical 

analysis for top and bottom compositions n-butane,  

it indicates the RMSE is small for extract from close loop 

compared to open loop response. Therefore the extract 

from close loop perform is better than the open loop 

response.  
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Fig. 31: Residual analysis n-butane test data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 32: Residual analysis n-butane validation data set. 
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Nomenclature 

At                   Actual value 

xmeamsured               Measure value 

Cp    Person correlation co-efficient 

xpredicted              Predicted value 

Di                   Product yi  iy  

yi       Difference actual and average actual 

Ea     Actual value 

Ep              Predicted value 

iy           Difference predicted and average predicted 

aE      Average actual value 

pE              Average predicted value 

2           Variance 

Ft              Predicted value 

yt    Data set certain value 

K           Number of free model parameters 

ft              Associated model value 

MSE          Mean square error 

y                 Mean of observed data 

N               Number of observation 

R2         R squared 
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