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ABSTRACT: The influence of nanofluid with different wave forms in the presence of inclined
asymmetric channel on peristaltic transport of a pseudoplastic fluid is examined. The governing
equations for two dimensional and two directional flows of a pseudoplastic fluid along with
nanofluid are modeled and then simplified under the assumptions of long wavelength and
low Reynolds number approximation. The exact solutions for temperature and nano particle volume
fraction are calculated. Series solution of the stream function and pressure gradient are carried out
using perturbation technique. The flow quantities have been examined for various physical
parameters of interest. It was found that the magnitude value of the velocity profile decreases
with an increase in Q and ¢ and increases in sinusoidal, multisinsoidal, trapezoidal and triangular
waves. It was also observed that the size of the trapping bolus decreases with the decrease
in the width of the channel d and increases with an increase in &
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INTRODUCTION

The study of nanofluids has achieved considerable
importance among the researchers because of its applications
in sciences and industry. Nanofluids are the embryonic
mixtures consist of solid particles disseminated
in the conventional heat transfer base fluids. Base fluids

(like water, ethylene glycol etc.) have ability to increase
the effective thermal conductivity of nanofluids.
The theory of nano fluids was first given by Choi [1].
Selvakumar & Suresh [2] have examined the convective
performance of CuO/water nanofluid in an electronic heat sink.
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In their analysis they pointed out that nanoparticles
dispersed in the base fluids have overcome the limitations
of micron sized particles. Bachok et al. [3] have examined
the unsteady boundary layer flow and heat transfer
of a two dimensional nanofluid over a permeable stretching
or shrinking sheet. Natural convective boundary layer flow
of a nanofluid past a convectively heated vertical plate
has been examined by Aziz & Khan [4]. In another study,
Aziz et al. [5] have presented the free convection
boundary layer flow past a horizontal flat plate embedded
in porous medium filled by nanofluid containing
gyrotactic microorganisms. Some recent studies of nano
fluid on different flow problems are given in Refs. [6-12].

Peristalsis is a mechanism which is produced by
successive waves of contraction which pushes their fluid
(or fluid like contents) forward. Since the first
investigation done by Latham [13], many researchers
have discussed the peristaltic flows of Newtonian and
non-Newtonian fluids with different flow geometries.
Eytan & Elad [14] have highlighted the importance
of peristaltic flows in asymmetric channel. Tripath [15]
has examined the peristaltic transport of a viscoelastic fluid
in a channel. Nonlinear peristaltic transport of a Newtonian
fluid in an inclined asymmetric channel through a porous
medium has been investigated by Kothandapani and
Srinivas [16]. Srinivas et al. [17] have examined the mixed
convection heat and mass transfer in an asymmetric
channel with peristalsis. Effects of partial slip on the
peristaltic flow of a MHD Newtonian fluid in an asymmetric
channel have been done by Yilidirim & Sezer [18].
Nadeem & Akbar [19] have highlighted the study
of influence of heat and mass transfer on the peristaltic
transport of a Jeffrey-six constant fluid in an annulus.
Nonlinear peristaltic flow of a fourth grade fluid
in an inclined asymmetric channel have been discussed by
Haroun [20]. In another paper Haroun [21] has examined
the effect of Deborah number and phase difference
on peristaltic transport of third order fluid in an asymmetric
channel. For some relevant work of interest, the reader
is referred to [22-24].

Motivated from the above analysis, the aim of
the present paper is to examine the effects of nano-particles
on the peristaltic flow of a Pseudoplastic fluid in
an inclined asymmetric channel. The governing equations
of Pseudoplastic fluid for two dimensional flow in Cartesian
coordinate system are modelled along with heat transfer
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analysis and nanoparticle volume fraction. The highly nonlinear
equations are simplified using some assumptions (like long
wave length and low Reynolds number). The reduced
equations are solved analytically with the help of regular
perturbation technique. The physical features of the
pertinent parameters are discussed by plotting the graphs of
velocity, pressure rise, pressure gradient and stream lines.

THEORITICAL SECTION
Mathematical formulation

Let us consider the peristaltic transport of an
incompressible nano non-Newtonian fluid (pseudoplastic
fluid) in a two dimensional channel of width di+do.
The channel is inclined at angle 3. The channel asymmetry
is produced due to different amplitudes and phases
of the peristaltic waves. Heat transfer along with nano particle
phenomena has been taken into description. The lower
wall of the channel is sustained at temperature T; and
nano particle volume fraction C; while the upper wall has
temperature To and nano particle volume fraction Co.

The geometry of the wall surface is defined as

2n
Y=H1=d1+alcos{7(X—ct)}, (1)
21
Y=H,=-d,-b, cos T(X—Ct)-ﬁ-(p ,

Where a; and b; are the amplitudes of the waves, A is
the wave length, di+d; is the width of the channel, c is the
velocity of propagation, t is the time and X is the
direction of wave propagation, the phase difference ¢
varies in the range 0<¢<m , ¢ = O corresponds to
symmetric channel with waves out of phase and ¢ = =
the waves are in phase, and further a;, by, di, d2 and ¢
satisfies the condition
af+b12+2a1b1005(ps(dl+d2)2.

The equations governing the flow are given by the
continuity equation

V-V=0, )

The equation of motion
oV .
Py (E+(V~V)Vj=d|vr+f, (3)

where
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t=—Pl+S

in which the extra stress tensor S for pseudoplastic
fluid is defined as [25]

1

S,+A,S¥ +5 04~ W) (AS+SA )=pA,, (4)

V.98 g7 LS, (5)
dt

L=gradV (6)

The energy equation

D
(pc)f —kV2T+(pC) (D VCVT+T—TVTVT) 7
0

The nanoparticle volume fraction equation

dC

DT 2
— =D V’C+—LV°T (8)
dt T

0

In the above equations, V is the velocity vector, u is
the dynamic viscosity of the fluid, S¥ the upper-
convected derivative, A1 the relaxation times, f is
the body force, P is the pressure, o is density of fluid base,
v is the kinematic viscosity, T is the temperature, Dg is
the Brownian diffusion coefficient, Dr is the thermophoretic
(po),
(pc);
heat capacity of the nanoparticle material and heat
capacity of the fluid with p being the density, C is
the volumetric volume expansion coefficient and oy is
the density of the particles.

We seek the velocity field for the two dimensional
and two directional flow of the form

diffusion coefficient, T= is the ratio of the effective

V=(U(X,Y,1),V(X,Y,t),0): )

Introducing a wave frame (x,y) moving with velocity
¢ away from the fixed frame (X,Y) by the transformation

x=X-ct, y=Y, u=U-c, v=V, p(x)=P(X,t) (10)

Using Egs. (9) and (10) in Egs. (2) to (8) the equations
in wave frame becomes
ou ov

— 4+—=0, 11
oxX oy (1)
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oxX oy OX 0OX oy
pgsina+pga(T-T,)+pga(C-Cy),

TEANRYAY .
Pri%ox oy

%(Syy)—pgcow,

(antayEn Lastagh 1)
ox oy ax ay

Rl ssE G

[u@+v@]=D 6C 6C + (15)
ox oy ox2 ay

D_ a T a T
ox? 6y
Where the stresses appearing in the above equations
are defined through these equations.

pf(uaqu aUJ__@ i(SXX)Jri(Sxy)* (12)

2—5+6%(st )+ (13)

ou
Zuazsxx + (16)

oS oS,
kl[ui+v Za—uS —Za—uSXy]+

OX oy ox ** oy
1 ou ou ov
—(A, — 4S.  —+2S
AG “1)( XX ox Xy(ay 8xj]
ou ov
S+ 17
”(ay 8xj Xy (17)

0S 0S
A u—L+v— _vg _Oug |,
OX oy ox X oy VW

%(xl—pl)[(s +S, )(a“ gn

ov
2u@:sw+ (18)
0S S
7 T R AP AR S LA
X oy oy o Tax T
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Defining the following non-dimensional quantities

d
x=2,y=2, g=2, =2, §=-L, (19)
A d; c c A
2
d:d_Z E:dl_p f:C_t h :i
d, pe At od
H a b cd, _
hy=—2 a=21 p=-1 Re=""t F=_
d,”” d  d v cd,
T-T = d
_ 0 _ 1 _ 1
e_Tl_-I—O’ SXY Esxx’ Xy Esxy’
s s proy n o PrliTo)
Wone W a T T,v '
_ (C _Co) pgocdlz( )
b U 1 HC l
ad?(C,-C
:pg 1( 1 0), Le:i,
pe Dg

With the help of Eqg. (19), Egs. (11) to (18) along with

velocity stream function W relation (u _%—\3 v=-3 a\P)

after dropping the bars take the form

ap +52

Red(\W, W, —¥, ¥, )=- . 8X(s )+

(20)
0

Re .
a—y(Sxy)+Gr9+ BrcD+ﬁsm[3,

+

Red® (¥, ¥, —wywxx)z—g—S+52 i(sxy) (21)

OX

sa—ay(syy)—és%cosﬁ

Red(¥,0, —\Pxey)=%(eyy +8%0,, )+ (22)

N, (5%0,®, +0,@ )+ N, (52 (6,)° +(ey)2)

RedLe(¥, @, —¥,® )=(d, +5°®,, )+ (23)
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28, =S, + (24)
G 0
xl(a(qf o 5_ij ~28'¥, S, - ZWnyij
1 2
E(xl—ul)(48\lfxysxx+2( -5°¥,,)s,,)
2
kW SO W =Sxy+ (25)
28w, 2y aS+6‘PS—‘PS+
Y ox ¥y ay xx7xx vy yy
1 2
E(}”l _p'l)((\{} ‘Pxx )(Sxx +Syy))
~28, =S + (26)
G
xl(s(wyax— Xayjs +25 \yxxsxy+25\yxysyyj
1 2
S (2(¥y, 57, )8, ~45%,.8,, |

The corresponding boundary conditions in terms of
stream function are defined as

‘Pz% at y=h, =1+acos2nx, 27)

‘P:—g at y=h,=-d-bcos(2nx+¢),

oY
a_yz_l at y=h, and y=h,,
0=0at y=h,, (28)

0=1 at y=h2,

®=0at y=h, (29)
®=1at y=h,

Where q is the flux in the wave frame, a, b, ¢ and d
satisfy the relation

a2 +b%+2abcosp<(1+d)’.

Under the assumption of long wave length & « 1 and
low Reynolds number, Egs. (20) to (26) become

oS
P _ Ty +§3|nB+Gr6+B<D (30)

ox oy
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op

=0, 31
oy (31)
2 2
15, 0oe (00 -
Proy oy oy oy
2 N 2
a_(f _ta_?zo (33)
y° N, ay
Sx>< =(7\‘1_'_l’l1)sxy\yyy’ (34)
v
yy
v 35
xy 1+g\y§y (35)
Syy :(_7”1 + H1)Sxy\Pyy’ (36)

2 2
Where g:xfﬂ%.
Elimination of pressure from Egs. (30) and (31),
yields

2w
L er®ip 22 g 37)
oy 1+Q‘I’yy oy oy

The above equation can also be written as

3
o'y o2 (52\1/] 20 _ oD
¢y X sGr

2 i o0 38
oy’ “oy?| ay? oy "oy (3

Solution of the problem

In order to calculate the solutions for the given system
of linear and non-linear differential equations,
the treasured solution for Eq. (33) is defined as

N
q)(x,y):—N—‘eJra (X)y+a (x) (39)
b 1 2
Where ai(x) and ax(x) are unknown functions. Now

substitute Eq. (39) into (32) we get

2
a—(2+PrNba (x)@=0 (40)
oy Y

The exact solution of Eq. (40) give the temperature
distribution as
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A as(X) —a (X)PrN,y m
X, y)=—=———+a (X)e !
(x,y) PN (9 4() (41)
1
Where as(x) and as (x) are unknown functions. Now
with the help of temperature distribution (Eq. (41)),

the nano-particle concentration @is given from Eq. (39) as:

N a (X) —-a (X)PrNyy
D(X,y)=——" 2 +a (x)e !

— + (42)
N, PrNbal(x) 4

a (x)y+a (x)

By applying the boundary conditions, values
of unknown functions ai(x), az(x), as(x) and as(x)
are defined as

1+%
a ()= b 43
1() h —h “
2 1
1+%
a (X)=-h b )
J)=h e
2 1
—-a (X)PrNgh
e ! '
a3(x):_PrNba1(X) -a (X)PrN,h -a (X)PrN.h
e ! ‘-l '
aA(X): 731(X)Prth2 7al(x)Prth1

e

Thus the exact expressions for the temperature

distribution 6 and nano-particle concentration @
are given by
-a (X)PrNyy —-a (X)PrN.h
e 1 _ 1 1
9(X,Y): —-a (X)PrNgh —-a (X)PrNgh (44)
e ! 2 _ 1 1
O(x,y)=|1 N, y_hl (45)
Xy)=|1+— || — |-
y N, Jlh =h
2 1
Nt e—al(x)Prbe_e—al(x)Prth1
N_b e—al(x)Prthz _e—al(x)Prthl

Egs. (30) and (38) are highly non-linear equations,
so the exact solutions are looking difficult, Therefore,
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we apply regular perturbation technique. Now we expand
¥ pand g as:

W= +C(P), P=P,+C(p), q=0,+C(q,) (46)

Substituting Eq. (41) into Egs. (29) and (37) and then
solving the resulting zeroth and first order systems and
setting q, =q—-Cq, we arrive at

1
BT "
(kg (hy,=h, ) (h, =y) (h, —y)x

(Brk, (h, —h,)2(h, —y) (h, —y)+24(h, +h, —2y)) +
+24Kk K, (h, —h,) (h, =y) (h, —y) ((h, —y)e"* +

e (h, —y))+24k,((h, —h,)%e" 1"
(h, —y)*(=3h, +h, +2y)+

(h,—y)?e" (~h, +3h, -2y)))-

1

m(q(h1+hz—2y)
1 2

(7 +2y(h, +h,)—4h h, +h -2y%) )+

byoY® +3y b1y +bg, ) +byg .
45360k3(h, —h,)®

W(Ml?Skgekoy (384K Y2 +koe" +
0

64(3K,,y+k,, ))~5670k3e" (128k,y° +

96k, v +2koye ” +64k, y+k e +32k )+
ok3y* (y(3kgy® +6K.y* +14k y+42k, ) +210k,)+
35k4e" (1296k,y* +1296k,,y° +81ky%e" +
1296k, .y +1296k,,y+81k, . ye " +16k £ +
81k Y +1296k,,)~5443200k " (4kgy+k,, )+

38102400k, ),
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dp_p, (y_hl)(%ﬂ)

- (48)
dx h,—h,

Nt (e—al(x)Prbe _e—al(x)hlPrNb )

+6b,. +Brk,y+
Nb (e—al(x)thrNb _e—al(x)hlPrNb) 05 2Y

+—sinpB+

Fr

k3ek°y e—al(x)Prbe _e—al(x)th’r)Nb
Gr
k e—al(x)thrNb _e—al(x)th’r)Nb

0

12k3ekoy

2
£(b2, (~72byg ~12Brk,y - )—

0
60y, (Ko (6Dg5 +Brk,y) +kye' )

3
kO

X

(k(z,y(lzb05 + Brkzy)+2k3ek°y)
kg

k
(126K (—15e” (72b Brk,k k3y® (Koy+3)+

+ X
7560k}

2 3 3 21,2 4
43207k Koy (Koy+2)+k, (K3 (3Brokik,y* —

AY(y(y (Kgy +Ky, )

Ap=] t(j—i} ., (49)

Where the constants appearing in Eqgs. (47) and (48)
are defined in appendix.

Expressions for different wave shape

The non- dimensional expressions for five considered
wave form are given by [26]. The expressions for
the triangular, square and trapezoidal wave are derived
from the Fourier series.
1) Sinusoidal wave
h, (X)=1+asin2nX, h,(x)=-d-bsin(2rx+e).

2) Multisinusoidal wave
h, (X)=1+asin2nnx, h,(X)=-d-bsin(2nnx+¢).
3) Triangular wave

h, (x)=1+a 8 iﬁsin(Zn(Zm—l)x) ,
! 7'!33 m:1(2m—1)2
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Fig. 1: Velocity profile for different values of Q for fixed
values of a= 0.7, b=0.7, d= 1, ¢= /2, Gr= 0.8, Np= 0.5, Pr=2,
Ne= 0.9, x=0, Br= 0.6, & 0.08.

hz(x):—d—bl% 3 (_1—)m+zsin(2n(2m—1)x+(p)}.

T m=1 (2m —l)

4) Trapezoidal wave

32 » sinZ%(2m-1) .
hl(x):1+a[n—2mzlﬁm n(2n(2m—l)x)},

hz(x):_d_b{g i w

PP sin(2n(2m—1)x+cp)}.

5) Square wave

h, (x) =1+a{% n% E;nlw)—l) cos(2(2m—l)nx)],
h,(x)=—d —b[% n;%g;;)—l) cos(2(2m—1)rcx+<p)}.

Numerical results and discussion

The main objective of this portion is to revise
the graphical significances of the present flow problem.
Mathematica software is used to carry out the expressions
for pressure rise and pressure gradient because pressure
rise definition involves integration of dp/dx which is not
solvable analytically. Figs. 1 to 3 show the velocity
profile for different values of volume flow rate Q,
pseudoplastic parameter & and different wave forms.
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Fig. 2: Velocity profile for different values of & for fixed
values of a= 0.7, b= 0.7, d= 1, ¢= A2, Gr= 0.8, Np= 0.5, Pr= 2,
Ni= 0.9, x=0, Br= 0.6, Q=0.08.

It is observed from Fig. 1 that the magnitude value of the
velocity profile decreases with an increase in Q. Fig. 2
shows the velocity profile for different values of &.
It is depicted from Fig. 2 that near the center of the channel
the magnitude of the velocity profile decreases with
an increase in & Fig. 3 shows the velocity profile
for different wave forms. It is observed from Fig. 3 that
the magnitude value of the velocity profile increases
in sinusoidal, multisinsoidal, trapezoidal and triangular
wave. In order to see the behavior of pressure rise for
different values of B, Gr, d and & Figs. 4 to 7 are
prepared. It is observed from Figs. 4 and 5 that the
behavior of pressure rise in augmented pumping

(Ap<0, Q>0), nperistaltic pumping (Ap>0, Q>0)
and retrograde pumping (Ap>0, Q<0) regions is same.
In these regions the pressure rise increases with an
increase in  and Gr. It is depicted from Figs. 6 and 7 that
in the augmented pumping region (Ap<0, Q>0) the
pressure rise increases with an increase in the width of
the channel d, while in the peristaltic pumping
(Ap>0, Q>0) region the pressure rise decreases.

Figs. 8 to 10 indicate the pressure gradient for different
value of Fr and &. It is depicted that for x<[0,0.2] and

xe[0.8,1], the pressure gradient is small i.e., the flow

can easily pass with out imposition of a large pressure
gradient, while in the region xe[0.2,0.8], pressure

gradient decreases with an increase in Fr and &, large
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Fig. 3: Velocity profile for different wave forms for fixed values of a= 0.7, b= 0.7, d= 1, ¢= A2, Gr= 0.8, Nb= 0.5, Pr=2, Nt= 0.9,
x=0, Br=0.6, & 0.08. (a) for sinusoidal wave, (b) for multisinusoidal wave, (c) for Trapezoidal wave, (d) for Triangular wave.

Q.
<
Q Q
Fig. 4: Variation of pressure rise Ap with Q for a= 0.7, b=10.7, Fig. 5: Variation of pressure rise Ap with Q for a= 0.7, b=10.7,
d=15, ¢&= 42, & 0.01, N= 0.9, Np= 0.5, Pr=1, Gr= 0.8, Br= o= 0.2, ¢= 74, & 0.001, Ni= 0.9, Np= 0.5, Pr= 1.8, d= 1.5,
0.9, Re=0.5, Fr=0.8. Br=0.9, Re= 0.5, Fr=0.8.
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Ap
o

[ S

Fig. 6: Variation of pressure rise Ap with Q for a=0.7, b=0.7,
o= 0.2, ¢= 74, & 0.001, N= 0.9, Nb= 0.5, Pr=1, Gr= 0.8, Br=
0.9, Re=0.5, Fr=0.8.

N

Ap

N N R R = S~

05 0 05 1 15 2 25 3
Q

Fig. 7: Variation of pressure rise Ap with Q for a=0.7, b= 0.7,
o= 0.2, ¢= A4, Gr= 0.8, N= 0.9, Np= 0.5, Pr= 1, d= 1.5,
Br=10.9, Re=0.5, Fr=0.8.

amount of pressure gradient is required to maintain
the flux to pass. Figs. 10 indicate the pressure gradient
for different wave forms. Figs. 11 and 12 are displayed
to analysis the influence of temperature profile on N; and Pr
It is explored from Figs. 11 and 12 that the temperature
profile increases with an increase in Ny and Pr. This is
physically valid because these parameters show a direct
relationship with temperature. To examine the effects
of concentration profile on N; and Pr, Figs. 13 and 14
are prepared. It is illustrated from figures that the concentration
profile decreases with an increase in N;and Pr.

Stream lines for different values of d and & are shown
in Figs. 15 to 16. It is depicted from Figs. 15 that the size
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dp/dx

e ~. ]

0 0.2 0.4 0.6 0.8 1

Fig. 8: Variation of pressure gradient dp/dx with X for
a= 0.7, b= 0.7, o= 0.6, ¢= a6, & 0.03, Q= 0.5, N= 0.9,
Nb= 0.5, Pr=1.5,d=1.5, Br=0.9, Re= 0.8, Gr=0.8.

I
g [—c=00
---c=002

S| c=o004
5 J Lo g=o0s
2
S
© 3]

2

1

0 0.2 0.4 0.6 0.8 1

Fig. 9: Variation of pressure gradient dp/dx with X for
a= 0.7, b= 0.7, o= 0.6, ¢= a4, Fr= 0.8, Q= 0.5, N= 0.9,
Nb=0.5, Pr=1.5,d=1.5, Br=0.9, Re= 0.5, Gr=0.8.

of the trapping bolus decreases with the decrease in the
width of the channel. It is observed form Fig. 16 that the
size of the trapping bolus increases with an increase in &.
It is also observed from Figs. 15 and 16 that the trapping
bolus also shifted towards right side of the channel and
this happens due to increase of phase angle. Stream lines
for different wave forms are shown in Fig. 17.

CONCLUSIONS

In the current research paper we have investigated
the influence of nanofluid on peristaltic transport of
a pseudoplastic fluid in the presence of inclined
asymmetric channel. With the help of long wavelength
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0.8 1

Fig. 10: Variation of pressure gradient dp/dx with X for a= 0.8, b=0.1, a= 0.6, ¢= #/4, Fr=0.8, Nt = 0.9, Np= 0.5,
Pr=1.0,d=1.8, Br=0.9, Re= 0.5, Gr=0.1, & 0.03. (a) For sinusoidal wave, (b) For multisinusiodal wave,

(c) For square wave, (d) For Triangular wave.

Fig. 11: Temperature profile for different values of N for
fixed values of a= 0.5, b= 1.0, Pr= 1, Np= 0.3, d= 1.5, x=0,

¢= 6.
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Fig. 12: Temperature profile for different values of Pr for
fixed values of a= 0.5, b= 1.0, N¢= 0.7, Nb= 0.3, d= 1.5, x=0,
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Fig. 13: Concentration profile for different values of Nt for Fig. 14: Concentration profile for different values of Pr for
fixed values of a= 0.5, b= 1.0, Pr= 1, Np= 0.3, d= 1.5, x=0, fixed values of a= 0.5, b= 1.0, Ni= 0.7, Np= 0.3, d= 1.5, x=0,
¢= 6. ¢= 6.

Fig. 15: Stream lines for different values of d and ¢ for fixed values of
a=0.7,b=0.7,d=1,N= 0.9, Nb= 0.5, Pr=1, Q= 2, B= 0.1, & 0.03, Gr=0.1.
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Fig. 16: Stream lines for different values of £and ¢ for fixed values of
a=0.7,b=0.7,d=1, Ni=0.9, Np= 0.5, Pr=1.5, Q= 1.8, B= 0.9, d=1, Gr=0.8.

and low Reynolds number approximation the governing
equations of a pseudoplastic fluid along with nanofluid
are modeled. The exact solutions for temperature and nano
particle volume fraction are calculated. Perturbation technique
is used to carry out the series solution of stream function and
pressure gradient. Graphical results were plotted and reported
for different involved physical parameters of interest. The main
results of the present study can be summarized as follows:

e The magnitude value of the velocity profile
decreases with an increase in Q and ¢

e The magnitude value of the velocity profile
increases in sinusoidal, multisinsoidal, trapezoidal and
triangular waves.

e The pressure gradient decreases with an increase
in Fr and €.

e The temperature profile increases with an increase
in Nyand Pr.
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e The concentration profile decreases with an increase
in Ny and Pr.

e The size of the trapping bolus decreases with the
decrease in the width of the channel d and increases with
an increase in &.

Appendix
Ko =—2,(X)PrN,
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Influence of Nanoparticles Phenomena on the Peristaltic Flow ...

Fig. 17: Stream lines for different wave forms for fixed values of
a=0.7,b=0.7,d=1, N= 0.9, Np= 0.5, Pr= 1.5, Q= 1.8, B= 0.9, d= 1, Gr=0.8.
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