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ABSTRACT: In this work, a polyimide (PI) containing triazole units was synthesized using  

3,5-diamino-1,2,4-triazole and pyromellitic dianhydride in N-methyl-2-pyrrolidinone. This polymer 

was used as a support of manganese (III) tetrakis (4-methoxylphenyl) porphyrin acetate to attain  

a heterogeneous catalyst; namely Mn(T4-OMePP)OAc@PI. The synthesized PI and Mn (T4-

OMePP) OAc@PI were characterized by different spectroscopic and analytical techniques.  

The resulted catalyst was applied for epoxidation of alkenes and dehydrogenation of Hantzsch  

1,4-dihydropyridines (1,4-DHP) by peroxynitric acid (PNA; HOONO2) as a convenient new oxygen 

source. In association with HOONO2, Mn (T4-OMePP) OAc@PI was stable and proved to be  

an efficient, reusable and selective catalyst for epoxidation of alkenes (36-96% yield) and 

dehydrogenation of Hantzsch 1,4-DHP’s ( 94-100% yield). 
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Supported manganese porphyrin. 

 

 

INTRODUCTION 

The oxidation of hydrocarbons (i.e alkenes) with 

molecular oxygen is efficiently proceeds by 

monooxygenase such as P-450 enzymes and this 

oxidation rout is still a fascinating goal among chemists. 

So far, the most efficient catalytic methods for oxidation 

of hydrocarbons with synthetic metalloporphyrins  

have been obtained with single oxygen donors such as 

ROOH, PhIO, NaIO4, NaOCl, KHSO5, H2O2, etc [1- 9]. 

In these catalytic reactions the natures of porphyrin, 

central metal atom and the kind of used oxidant have 

dramatic influence on the yield and selectivity of the reactions.  

 

 

 

Moreover, they may also influence the nature of  

the active oxidizing intermediate being generated by 

metalloporphyrins and consequently affect the 

mechanism of the oxidations [10-14]. 

We wish here to report our results on the catalytic 

oxidation of alkenes and Hantzsch 1,4-DHP’s by 

peroxynitric acid (PNA; HOONO2) in the presence of 

polyimide-supported manganese (III) tetrakis(4-

methoxylphenyl)porphyrin acetate, [Mn(T4-

OMePP)OAc@PI] as a new heterogeneous catalytic 

system. To the best of our knowledge, there is no report  
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of using HOONO2 as oxygen donor on organic oxidation 

catalyzed by metalloporphyrins. HOONO2 is an oxo acid 

of nitrogen which may also be classified as an inorganic 

peracid. It is a biological relevant oxidizing agent 

containing reactive oxygen which possesses two-electron 

oxidative behavior [15, 16]. On the other hand,  

Mn(T4-OMePP)OAc@PI was used as catalyst because 

immobilizing of metalloporphyrins on a suitable support 

materials not only improves the catalysts stability and  

the selectivity of the product but also promotes the easy 

recover and reuse of the catalysts.  

 

EXPERIMENTAL  SECTION 

Materials and instruments 

All materials were of commercial reagent grade. 

Alkenes were purchased from Merck or Fluka and used 

as received. Hantzsch 1,4-DHP’s were synthesized  

by the reported procedure [17]. The free base porphyrin 

H2(4-OMePP) and its manganese complex Mn(4-OMePP)OAc 

were  prepared by the proposed methods [18, 19].  

The UV–Vis spectra of the porphyrins were obtained using 

a JASCO, V-570 spectrophotometer. Scanning Electron 

Microscopy (SEM) images were obtained from LEO 

instrument model 1455VP. Microstructure of samples 

was studied using a Zeiss, EM10C transmission Electron 

Microscope (TEM) model with 100 kV. The TGA was done 

using a Rheo Metric Scientific Instrument STA-1500 

model. IR spectra were recorded as KBr pellets  

on a FT-IR JASCO 460 spectrophotometer. Atomic 

Absorption Spectra (AAS) were recorded on a Varian-240 

spectrophotometer using a flame approach, after acid 

(HNO3/HCl) dissolution of known amounts of  

Mn(T4-OMePP)OAc@PI.  

 
Preparation of HOONO2 solution 

Fresh HOONO2 solution was prepared by the 

modification of method suggested by Appelman [20]. 

1.067 g (15 mmol) 98% NaNO2 was dissolved in 3 mL of 

30% H2O2 and the solution was cooled to 0 °C in an ice 

bath. Another 2 mL of the H2O2 was mixed with 0.3 mL 

70% HClO4 and the mixture is cooled to -5 °C.  

The nitrite-peroxide solution was then added to the stirred 

peroxide-acid solution in 1.0 mL increments. Finally,  

a further 1.0 mL of 70% HClO4 was added to this solution 

and stirred in -5 °C for 2 minutes. This fresh peroxynitric 

acid was demonstrated approximately 1.7 M in 

peroxynitric acid, corresponding to a 75% yield based on 

sodium nitrite [20] and should immediately be used. 

 

Preparation of polyimide (PI) 

In the first step, poly(amic acid) (PAA) was synthesized 

as precursor polymer precursor [21]. To a 50 mL  

three-necked round-bottom flask equipped with  

a high power electromagnetic stirrer and nitrogen inlet 

was added 3,5-diamino-1,2,4-triazole (0.50 g, 5.05 mmol) and 

freshly distilled N-methyl-2-pyrrolidinone (NMP) (4 mL).  

A clear diamine solution formed after stirring for 5 min. 

Then, pyromellitic dianhydride (PMDA) (1.100 g,  

5.05 mmol) was added immediately, followed by 

additional NMP (2 mL) to adjust the solid content of the 

mixture to be 20 (wt ). The mixture was stirred  

at room temperature for 24 h to afford an almost colorless, 

highly viscous solution. The inherent viscosity of  

the resulting PAA was 0.81 dL/g, measured in DMF  

at a concentration of 0.5 g/dL at 30 C. In the second step,  

it was dried and transformed into heterocyclic PI by 

sequentially heated at 110, 150, 180, 210, 230 and 280 C 

for 30 minutes each. Then, the fully imidized polymer 

film was stripped from the glass substrate by being 

soaked in water. 

 

Preparation of polyimide-supported manganese(III) 

tetrakis(4-methoxylphenyl)porphyrin acetate; Mn(T4-

OMePP)OAc@PI 

0.32 g (0.38 mmol) of  Mn(T4-OMePP)OAc was added 

to 3.2 g of PI in DMF (30 mL). The reaction mixture was 

vigorously stirred at 80 °C for 24 h. After cooling,  

the dark green solid was collected by filtration, washed 

thoroughly with DMF/CH2Cl2 (1:1) and dried under 

vacuum at 105 C for 24 h. Atomic absorption 

spectroscopy shows Mn loading of ~ 0.1mmol/g of PI . 

 

Oxidation reactions 

All epoxidation reactions were carried out at 5-10 °C 

under air in a 10 mL round bottom flask equipped with  

a stirrer bar. 0.025 mmol of alkene, 0.005 mmol of 

tetrabutylammonium bromide (TBAB, phase transfer 

catalyst) and 0.75 mL of CH2Cl2 are successively added 

to 4.5 mg of Mn(T4-OMePP)OAc@PI (containing ~ 

4.5×10-4 mmol of the Mn-porphyrin). Then,  20 μL of 

HOONO2 solution was added by syringe to the organic 

phase and the reaction was analyzed by GC. Oxidation of 
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Scheme 1: Synthesis of polyimide. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. XRD pattern of PI. 

 

Hantzsch 1,4-DHP’s were achieved using a similar molar 

ratios of the substrates and catalyst and the products  

were separated by TLC plates and analyzed as previously 

reported by spectroscopic methods [22]. 

 

RESULTS AND DISCUSSION 

Synthesis and characterization of polyimide (PI) 

As shown in Scheme 1, the free PI was prepared from 

treatment of pyromellitic dianhydride (PMDA) with  

3,5-diamino-1,2,4-triazole in the presence of N-methyl-2-

pyrrolidinone (NMP), followed by the heating at required 

temperatures [21]. 

Molecular weight of the polymer was measured  

by GPC in THF and polystyrene was used as standard. 

The PI exhibited number-average molecular weight (Mn) 

and weight-average molecular weight (Mw) in 1.09 × 105 

and 2.19 × 105 respectively. The molecular weight of the 

polymer was high enough to obtain flexible and tough 

polymer film by casting from their NMP solutions. 

The crystallinity of the PI was studied using wide-

angle XRD (Fig. 1). The broad peak in XRD spectrum  

of PI shows that it is completely amorphous. Presence  

of the non-coplanar and twisted units in the backbone  

of the polymer decreased the intermolecular forces between 

the polymer chains leading to reduce the crystallinity  

of this polymer. 

The SEM images of PI film (Fig. 2) shows the 

information of surface topography, indicating the 

amorphous nature of the polymer. 

The thermal property of PI was studied using TGA  

at a heating rate of 10 °C/min, under a nitrogen atmosphere 

(Fig. 3). This study shows that PI is thermally stable up to 

350 °C. The 10% weight loss temperature of this polymer 

was recorded in 400 °C in a nitrogen atmosphere.  

The amount of residue (char yield) of that in  

a nitrogen atmosphere was more than 48% at 800 °C. 

Char yield can be applied as decisive factor for estimating 

Limiting Oxygen Index (LOI) of the polymers based on 

Van Krevelen and Hoftyzer equation: 

LOI = 17.5 + 0.4CR   

where CR is char yield. The LOI value calculated for 

the untreated PI sample was higher than 36. On the basis 

of LOI value, such macromolecule can be classified  

as a self-extinguishing polymer [23, 24]. 
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Fig. 2: The SEM image of the PI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: TGA of PI. 

 

The FT-IR spectrum of the PI (Fig. 4 b, vide infra) 

exhibited distinct features that clearly indicate imide 

rings. The characteristic absorption bands of carboxyl 

groups of amic acid in 2400-3700 cm-1 disappear and 

those of the imide ring appear near 1725 cm-1 

(asymmetric stretching vibrations of the carbonyl group), 

1687 cm-1 (vibration of C=N) 1402 cm-1 (vibration of C-N), 

1029 cm-1, and at 765 cm-1 (imide ring deformation). 

 

Synthesis and characterization of Mn(T4-OMePP) 

OAc@PI 

The synthesized PI contains triazole units which  

is capable of coordination to Mn center of the porphyrin. 

The bonding is probably achieved through the 

interaction of the triazole nitrogen atoms with Mn(T4-

OMePP)OAc, as observed in cytochrome P-450 and 

related enzymes which a histidine acts as a catalytic 

residue in the distal heme pocket [25-32]. Another 

possibility for bonding PI to the Mn porphyrin consists 

of PI-N5 with sp3 hybridization (see scheme 1), which 

leads a “face-on” orientation of PI and Mn(T4-

OMePP)OAc, means that the porphyrin plane is 

parallel with the polymer surfaces. So, it is reasonable 

to assume that the triazole groups hold not only  

the Mn-porphyrin firmly in the polyimide but also act 

as nitrogenous axial ligand for Mn(T4-OMePP)OAc. 

Nitrogenous ligands such as imidazole, pyridine and 

their derivatives are reported to enhance catalytic 

activity and stability of metalloporphyrins via the 

cleavage of M-O bond in the oxidation form of  

the catalysts (i.e. high valent metal-oxo porphyrins) 

and to prevent auto-degradation of the catalyst [33-36]. 

The Mn content of Mn(T4-OMePP)OAc@PI  

was measured by dissolving a known mount of the solid 

in conc. HNO3/HCl (1:4 v/v), from this solution  

the Mn contents was estimated using Atomic Absorption 

Spectrometer (AAS). The Mn content was found to be ~ 

0.1 mmol/g, indicating the appropriate supporting of 

Mn(T4-OMePP)OAc on PI. 

The FT-IR spectra of PI, Mn(T4-OMePP)OAc and 

Mn(T4-OMePP)OAc@PI are shown in Fig. 4. As 

explained above, the FT-IR spectrum of PI shows major 

bands at 3365 cm-1 ( NH), 1725 cm-1 (C=O imide) and 

1687 cm-1 (C=N). Also the characteristic bands of 

Mn(T4-OMePP)OAc appear at 3436,1606, 1498, 1176, 

1114 and 1004 cm-1. The characteristic bands of Mn(T4-

OMePP)OAc at 1606, 1498 and 1176 cm-1 appear again 

in the Mn(T4-OMePP)OAc@PI spectrum, suggesting  

the precise supporting of the porphyrin on the polymer. 

Moreover, the band of 1687 cm-1 of C=N in PI shifted 

towards lower frequency at 1658 cm-1, which is probably 

due to the coordination of the triazole to Mn center. 

Fig. 5, represents the SEM image of Mn(T4-

OMePP)OAc@PI, indicating the morphology of the 

heterogeneous catalyst and a bulk microstructure 

composed of distributed network of Mn(T4-OMePP)OAc 

presented on the polyimide. 

The TEM images of PI (Fig. 6, a), and Mn(T4-

OMePP)OAc@PI (Fig. 6, b), clearly indicate the polymer 

chains and manganese porphyrin as approximately 

spherical dark points supported on PI with nearly 

nanoscale dimensions. 

The result of thermal analysis of Mn(T4-

OMePP)OAc@PI catalyst, is shown in Fig. 7. 
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Fig. 4: FT-IR spectra of Mn(T4-OMePP)OAc (a), PI (b) and 

Mn(T4-OMePP)OAc@PI(c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: SEM image of Mn(T4-OMePP)OAc@PI. 

 

It is observed that the catalyst is more stable in comparison 

to PI itself. The weight loss of the catalyst is about 20%  

at 800 °C, indicating that Mn(T4-OMePP)OAc@PI  

does not undergo major weight loss at high temperature. 

 

Epoxidation of alkenes 

The earliest reports of HOONO2 date back to the work 

of D’Ans & Friederich [37] and the subsequent study  

by Schwarz, [38] convincing characterization of the 

compound was only obtained in relatively recent times 

after its photochemical synthesis in the vapor phase  

by the combination of NO2 with HO2 [39]. A more practical 

synthetic method was next developed by Appelman et al. 

consisting of reaction of NaNO2 with 30% hydrogen 

peroxide and 70% HClO4 at -20 °C, which permitted  

to investigate chemical and spectroscopic properties of 

the acid [20]. It is claimed that production of HOONO2  

in aqueous solutions governed by the simple stoichiometric 

reaction as: 

2 2 2 4
NaNO 2H O HClO    

2 2 4
HOONO 2H O NaClO   

It was shown that peroxynitric acid is stable for 30-45 min 

in pH<3 especially at low temperature [16, 40]. This 

allows us for using it as oxidant in controlled 

experimental condition of temperature and pH for 

oxidation of organic compounds.  

Initially, styrene was oxidized by H2O2 and HOONO2 

in the absence of any catalyst under N2 atmosphere in 

CH2Cl2 at 10 °C. The results of GC analysis showed that 

the oxidation does not occur under these conditions 

(Table 1, run 1 and 2; vide infra). Then, the epoxidation 

was tested with H2O2 in the presence of homogeneous 

Mn(T4-OMePP)OAc catalyst and imidazole (Im;  

co-catalyst). The epoxide was obtained in 15% with 57% 

selectivity (Table 1 run 3; vide infra). Similarly, with 

Mn(T4-OMePP)OAc and HOONO2, the epoxidation 

yield was  68%  with 88% selectivity (Table 1 run 4), 

indicating the preference of HOONO2 over H2O2  

as oxidant. The nitrogenous ligand imidazole has positive 

effect and facilitates the epoxidation, since in the absence 

of imidazole the epoxidation yield and selectivity  

are very low. However, under these conditions both  

the catalyst and styrene epoxid were quietly demolished 

with increasing the reaction time and/or temperature.  

As shown in Fig. 8, the amount of Mn(T4-

OMePP)OAc decreased over the time, so that a ~74% of 

the catalyst is destructed in the reaction mixture after  

60 minutes (that is, only a ~26 % remained unchanged). 

Also, the amount of styrene epoxide increased steadily  

in the reaction mixture and reached a maximum amount 

(68 %) after ~20 minutes and then actually begins to drop off. 

One reason to fading the catalyst may be due to acidic 

media of the HOONO2 solution which already contains 

various radical species [41, 42], capable of poisoning 

and/or destructing the catalyst. Another may relate to 

degradation of the catalyst in the reaction mixture that 

occurs generally for homogenous catalysts. A similar 

explanation can be applied to why the epoxides are not 

stable in the reaction mixtures. 

However, the epoxidation was more efficient with 

heterogeneous Mn(T4-OMePP)OAc@PI catalyst, so that 
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Fig. 6: TEM images of PI (a) and Mn(T4-OMePP)OAc@PI(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: TG analysis of Mn(T4-OMePP)OAc@PI. 

 

epoxidation of styrene with Mn(T4-OMePP)OAc@PI/ 

HOONO2 in 5-10 °C leads to the formation of the 

epoxide in 96% yield accompanied by high selectivity 

and turnover number within 15 minutes; surprisingly 

without significant degradation of the catalyst and  

the epoxide (Table 1, run 5). As shown in Fig. 9, the amount 

of styrene epoxide and the catalyst are 95% and 87% 

respectively even up to 60 minutes. Here, there is no need 

to use nitrogenous axial ligand as co-catalyst, since the PI 

in Mn(T4-OMePP)OAc@PI structurally has triazole units 

which could act as both support and axial ligand for 

Mn(T4-OMePP)OAc (see scheme1). This was examined 

with imidazole and found a little change in epoxide yield 

with and without imidazole. 

We also found that turnover number (TON; the ratio 

of the number of moles of produced epoxide to the 

number of moles of catalyst ) for Mn(T4-OMePP)OAc 

and Mn(T4-OMePP)OAc@PI was ~68 and ~ 312, 

respectively [43], indicating that Mn(T4-OMePP)OAc@PI  

as heterogeneous catalyst is about 4.6 fold more efficient 

than Mn(T4-OMePP)OAc for the epoxidation. 

Furthermore, Mn(T4-OMePP)OAc@PI could easily  

be recovered by phase separation and reused for styrene 

epoxidation for several times. As shown in Fig. 10,  

the yield of styrene epoxide after 5 recycling was 0%  

and 42% with Mn(T4-OMePP)OAc and  

Mn(T4-OMePP)OAc@PI respectively in 60 minutes, 

demonstrating again the reusability and validity of the 

former for alkene epoxidation with HOONO2.  

Moreover, UV-Vis spectra taken from reaction 

mixture of styrene epoxidation by (T4-

OMePP)OAcI@PI/ HOONO2 showed that no significant 

leaching of Mn(T4-OMePP)OAc occur under 

experimental conditions studied. This indicates that  

the synthesized PI are ideal supports to stabilize  

Mn-porphyrin. 

The optimal conditions of epoxidation employed  

for styrene were also applied for some other alkenes and 

the results were summarized in Table 1.  

It is plausible that the steric and electronic properties 

of alkene substrates affect the epoxide yields and reaction 

times. The reactions were found to take place in 36-96 % 

epoxide yields. It seems that electron rich C=C bonds 

with less steric hindrance show higher activity for 

epoxidation. For instance, cis-stilbene (run 7; 70 % yield) 

is more reactive than that of trans-stilbene (run 8; 47% 

yield). Moreover, the selectivity obtained for tras-stilbene 
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Fig. 8: Epoxidation of styrene by Mn(T4-OMePP)OAcI-Im/ 

HOONO2 in CH2Cl2 showing the amount  of styrene epoxide 

(♦) and Mn(T4-OMePP)OAc (). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Epoxidation of styrene by Mn(T4-OMePP)OAcI@PI/ 

HOONO2 in CH2Cl2 showing the amount  of styrene epoxide 

(♦) and Mn(T4-OMePP)OAc (). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10: Reusability of Mn(T4-OMePP)OAc and Mn(T4-

OMePP)OAc@PI in  styrene epoxidation. 

was shown to be lower (47/54; 87 %) than that of the cis 

isomer (70/71; 98%). Similar comparisons may also be 

made with styrene (run 5) and α-methylstyrene (run 6), 

and with cyclooctene (run 10) and 1-octene (run 11) 

considering the reaction times, selectivities, turnover 

numbers and electronic/steric properties of alkenes.  

 

Oxidative dehydrogenation of Hantzsch 1,4-

dihydropyridines (1,4-DHPs) 

Hantzsch 1,4-DHP’s are important class of drugs for 

the treatment of cardiovascular diseases such as 

hypertension and angina pectoris [44, 45]. In human body 

the main metabolic route of dihydropyridine drugs involve 

their oxidation by cytochrome P-450 in the liver [46, 47]. 

Here, the oxidation of various Hantzsch 1,4-DHP’s  

was followed by the same method described above for  

the epoxidation. As shown in Table 2, the oxidations lead 

to the formation of the corresponding pyridine derivatives 

in high yields in few minutes. These oxidation reactions 

were fast in all cases requiring less than 5-15 minutes, 

including the substrates having either electron donating 

(i.e entry 4 and 6) or electron withdrawing groups  

(i.e. entry 5, 7 and 8) at the phenyl substituent.  

In addition to dehydrogenated products, in some cases 

(i.e. run 4, 5 and 7) dealkylated pyridine derivatives were 

also obtained, though the amounts of dealkylated 

pyridines are very low compared with the amount of the 

dehydrogenated pyridines. 

 

CONCLUSIONS 

We report on a novel catalytic system based on  

a polyimide-supported manganese (III) tetrakis(4-

methoxylphenyl)porphyrin acetate [Mn(T4-

OMePP)OAc@PI] as a heterogeneous catalyst, which 

catalyzed epoxidation of alkenes and dehydrogenation of 

Hantzsch 1,4-dihydropyridines (1,4-DHP) with moderate 

to high yields and selectivities by HOONO2. We found 

that the polyimide is an appropriate support for  

Mn(T4-OMePP)OAc. The supporting route may achieve 

coordination of the nitrogen triazole units in the polymer 

to the Mn-porphyrin.  In the epoxidation reactions  

the homogeneous Mn(T4-OMePP)OAc was not an 

appropriate catalyst, since the epoxide and catalyst  

were demolished in the reaction mixture specially  

in temperature more than 15 °C. However, Mn(T4-

OMePP)OAc@PI/HOONO2 was found to be a 
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Table 1: Epoxidation of alkenes with HOONO2 catalyzed by Mn(T4-OMePP)OAc@PI at 5-10°C. 

Entry Alkene Product Conversion (%) Epoxide (%)f Time, min. TONg 

1 

 
 

nda nd 60 - 

2 

 
 

4b nd 60 - 

3 

 
 

26c 15(57) 30 8.3 

4 

 
 

77d 68(88) 30 37.7 

5 

 
 

98 96(98) 15 53.3 

6 

  

91 83(91) 50 46 

7 

 
 

71e 70(98) 40 38.9 

8 

  

54e 47(87) 60 26 

9 

 
 

74 72.5(98) 15 40 

10 

  

90 86(95) 40 47.7 

11 
 

 

36 36(100) 60 20 

As described in experimental, GLC yield was determined based on the starting alkane and the molar ratio of  
Mn(T4-OMePP)OAc@PI; TBABr; alkene and HOONO2 was 1:11:55:75 respectively. nd; Not determined. 

a) With H2O2;  b) with HOONO2 in the absence of the catalyst. C) With H2O2 ; 

d) With HOONO2 in the presence of homogeneous Mn(T4-OMePP)OAc catalyst. 

e) Cis and trans- stilbeneoxides were examined by 1HNMR (Bruker Avance DPX 250 MHz) spectroscopy. 

f) The data in the parentheses represent selectivity for epoxide formation. 

g) TON; Turnover number with the molar ratios described in experimental (1:11:55:75). 
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Table 2: Dehydrogenation of Hantzsch 1,4-DHP’s with HOONO2 catalyzed by Mn(T4-OMePP)OAc@PI at 5-10°Ca. 

Entry 1,4-DHP Product (Yield %) Time, min. 

1 

  

97 5 

2 

  

98 5 

3 

  

100 11 

4 

  

96b 10 

5 

 
  

96b 5 

6 

  

97 7 

7 

  

93b 10 

8 

  

94 8 
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Table 2: Continue. 

Entry 1,4-DHP Product (Yield %) Time, min. 

9 

  

87b 10 

10 

  

b89 15 

a) As our previous work, all products were isolated and identified by comparison with authentic samples (IR, 1H NMR, m.p.)[22]. 

b) 4-7% of dealkylated pyridines was formed. 
 

convenient catalytic system for the oxidations, since  

the reactions were achieved with high yields, selectivity  

and good turnover number. Moreover, the Mn(T4-

OMePP)OAc@PI is reusable at least up to 4-5 times without 

an appreciable loss of the activity and selectivity for  

the oxidation. To the best of our knowledge, there is no report 

on oxidation of organic compounds by HOONO2  

in the presence of metalloporphyrins or supported 

metalloporphyrins and our next goal is to develop a selective 

artificial oxidation of other organic compounds (i.e. alkanes, 

alcohols, thiols,…)  by this catalytic system. 
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