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ABSTRACT: A simple and efficient synthesis of some polyfunctionalized pyrrole derivatives by a 

triphenylphosphine-promoted condensation reaction between dialkyl acetylenedicarboxylates, 

arylglyoxals, and ammonium acetate is described. This present  method carries several advantages, 

such as good yields, a simple procedure, non-hazardous reaction conditions and starting  

from easily accessible substrates. 
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INTRODUCTION 

N-Heterocycles receive considerable attention in the 

literature as a consequence of their exciting biological 

properties and their role as pharmacophores [1]. Of these 

heterocycles, the pyrrole ring is one of the most 

fundamental. It is a widely distributed structural unit  

in a variety of natural and biologically important molecules  

such as porphyrins, bile pigments, coenzymes, and  

alkaloids [2]. Therefore, it is not surprising that many 

methods for the syntheses of substituted and functionalized 

pyrroles have been reported in the literature [3].  

A diverse range of pharmacological properties, including 

antibacterial, antitumor, anti-inflammatory, antioxidant, 

antianginal and antifungal activities of this important 

class of heterocycles has been reported in the literature [4].  

Recently, syntheses of polysubstituted pyrroles have 

been reported from conjugate addition reactions [5],  

 

 

 

transition metal intermediates [6], reductive coupling [7], 

aza Wittig reactions [8], isocyanide-based reactions [9], 

utilizing the sila-Stetter/Paal-Knorr sequence strategy [10] 

and other pathways [11]. However, some of these 

methods have some drawbacks, such as harsh reaction 

conditions, lengthy reaction times, expensive catalysts 

and low yields. Therefore, it is clearly evident that 

developing new and flexible methods of synthesis is required. 

Addition reaction between phosphines or 

triphenylphosphit and activated carbon-carbon triple 

bonds is well known to produce a reactive zwitterionic 

intermediate, which may be trapped by various 

electrophiles [11-17]. The reaction of triphenylphosphine 

with dialkyl acetylenedicarboxylates (DAAD) has been 

studied in the presence of a variety of organic acidic 

compounds, in order to trap the zwitterionic intermediate.  

 

 

 

* To whom correspondence should be addressed. 

+ E-mail: hosseinanaraki@yahoo.com 

1021-9986/2017/5/17-22         6/$/5.60 

 



Iran. J. Chem. Chem. Eng. Anaraki-Ardakani H. & Nikomanesh P. Vol. 36, No. 5, 2017 

 

18 

 

 

 

 

 

 

 

Scheme 1: Synthesis of some α-aminophosphorous ylide. 

 

Trapping of PPh3-DAAD zwitterion by an organic acidic 

compound containing a carbonyl group has been used as a 

one-pot and efficient route for the synthesis of a variety of 

heterocyclic and carbocyclic compounds[16-19]. 

Treatment of triphenylphosphine with DAAD in the 

presences of ammonium acetate has been reported  

to produce α-aminophosphorous ylide 4 [20- 22] (Scheme 1). 

Keeping in mind the biological importance of pyrrole 

ring and in continuation of our current studies  

on the development of new routes in heterocyclic 

synthesis [18, 19, 23], herein we report a very simple and 

highly efficient one-pot method for the synthesis of 

polyfunctionalized pyrrole derivatives through the 

reaction of dialkyl acetylene dicarboxylates, ammonium 

acetate and arylglyoxals in  the presence of 

triphenylphosphine under catalyst-free conditions. 

(Scheme 2). 

 

EXPERIMENTAL  SECTION 

Melting points were determined with an 

electrothermal 9100 apparatus. Mass spectra were 

recorded on a FINNIGAN-MAT 8430 mass spectrometer 

operating at an ionization potential of 70 eV. IR spectra 

were recorded on a Shimadzu IR-470 spectrometer.  
1H and 13C NMR spectra were recorded on Bruker  

DRX-500 Avance spectrometer at the solution in CDCl3 

using TMS as an internal standard. The chemicals used in 

this work purchased from Fluka (Buchs, Switzerland) and 

were used without further purification. 

 

General procedure  

To a magnetically stirred solution of PPh3 (1 mmol) 

and, ammonium acetate (1 mmol) in CH3CN (10 mL) 

was added dropwise a mixture of DAAD (1 mmol) in 

CH3CN (3 mL) at room temperature over 2 min.  

The reaction mixture was then stirred for 20 min.  

After completion of the reaction (TLC), a mixture of 

arylglyoxals (1 mmol) in CH3CN (3 mL)) was added and 

the reaction mixture was stirred for more 24 h. The 

solvent was evaporated and the residue was purified by 

column chromatography on SiO2 using EtOAC-hexane 

(1:4) mixture as eluent. 

 

Dimethyl 4-phenyl-1H-pyrrole-2, 3-dicarboxylate (6a) 

Yellow crystals, M.p. 135°C. IR (KBr) (νmax, cm-1): 

3275(NH), 1669, 1729(C=O). 1H NMR (500.1 MHz, 

CDCl3) δ = 3.92 (3 H, s, OCH3), 3.96 (3 H, s, OCH3), 

6.70-7.60(6 H, m, C6H5 and CH), 9.67(1H,br,NH) ppm. 
13C NMR (125.7 MHz, CDCl3): δ = 51.95 (OCH3), 52.34 

(OCH3), 110.71, 121.43, 122.63, 124.90, 128.33, 129.09, 

130.30, 135.05 (C arom), 160.93 (CO2Me), 164.35 

(CO2Me). MS (m/z, %): 259 (M+, 9). Anal. Calcd. for 

C14H13NO4 : C, 64.86; H, 5.05; N, 5.40 %. Found: C, 

64.64; H, 5.21; N, 5.52 %. 

 

Diethyl 4-phenyl-1H-pyrrole-2,3-dicarboxylate (6b) 

Yellow crystals, M.p. 141°C. IR (KBr) (νmax, cm-1): 

3280(NH), 1681, 1729 (C=O). 1H NMR (500.1 MHz, 

CDCl3) δ = 1.19 (3H, t, 3JHH = 7.2 HZ ,OCH2CH3),1.35 

(3H, t, 3JHH = 7.2 HZ OCH2CH3), 4.23 (2H, q, 3JHH = 7.2 

Hz ,OCH2CH3), 4.34 (2H, q, 3JHH = 7.2 HZ ,OCH2CH3), 

7.01 (1 H, s, CH), 7.33-7.39 (5H, m, arom), 9.46(1H, br, 

NH) ppm. 13C NMR (125.7 MHz, CDCl3): δ = 14.35, 

14.61 (2OCH2CH3), 61.42, 61.64 (2OCH2CH3), 118.61, 

120.43, 123.46, 123.67, 128.12, 129.22, 130.30,  

133.82 (C arom), 160.71 (CO2Et), 164.25 (CO2Et).  

MS (m/z, %): 287(M+, 11). Anal. Calcd. for C16H17NO4 : C, 

66.89; H, 5.96; N, 4.88%. Found: C, 66.74; H, 5.69;  

N, 4.96%. 

 

Dimethyl 4-p-tolyl-1H-pyrrole-2, 3-dicarboxylate (6c) 

Yellow oil, IR (KBr) (νmax, cm-1): 3295(NH), 

1713(C=O). 1H NMR (500.1 MHz, CDCl3) δ = 2.49 (3H, 

s, CH3), 3.86 (3 H, s, OCH3), 3.89 (3 H, s, OCH3), 

 

PPh
3

CO
2
RRO

2
C

CO
2
R

PPh
3

NH
2

RO
2
C

CH
3
CO

2
NH

4+

1 2 3 4

+



Iran. J. Chem. Chem. Eng. Synthesis of Polyfunctionalized Pyrroles ... Vol. 36, No. 5, 2017 

 

19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2: One-pot synthesis of some functionalized pyrrole derivatives. 

 

6.87-7.57(5 H, m, arom and CH), 9.76 (1H, br, NH) ppm. 
13C NMR (125.7 MHz, CDCl3):  δ = 21.15(CH3), 52.15 

(OCH3), 52.41 (OCH3), 120.04, 121.13, 126.33, 127.29, 

128.43, 129.24, 130.20, 130.46 (C arom), 160.61 

(CO2Me), 165.35 (CO2Me). MS (m/z, %): 273 (M+, 20). 

Anal. Calcd. for C15H15NO4: C, 65.92; H, 5.53; N, 5.13%. 

Found: C, 66.08; H, 5.41; N, 5.36%. 

 

Diethyl 4-(4-chlorophenyl)-1H-pyrrole-2,3-dicarboxylate 

(6d) 

Yellow crystals, M.p. 137-139°C. IR (KBr) (νmax, cm-1): 

3215 (NH), 1690, 1712 (C=O). 1H NMR (500.1 MHz, 

CDCl3) δ =1.20 (3H, t, 3JHH = 7.1 HZ ,OCH2CH3),1.32 (3H, 

t, 3JHH = 7.1 HZ OCH2CH3), 4.18 (2H, q, 3JHH = 7.1 H Hz 

,OCH2CH3), 4.32 (2H, q, 3JHH = 7.1 HZ ,OCH2CH3), 7.01 (1 

H, s, CH), 7.33-7.39 (4H, m, 4-ClC6H4), 9.71(1H, br, NH) 

ppm. 13C NMR (125.7 MHz, CDCl3):  δ = 14.34, 14.49 

(2OCH2CH3), 61.68, 62.10 (2OCH2CH3), 122.08, 124.86, 

125.98, 129.42, 130.18, 132.86, 133.87, 140.72 (C arom), 

159.89 (CO2 Et), 166.13 (CO2Et). MS (m/z, %): 321 (M+, 

15). Anal. Calcd. for C16H16ClNO4 : C, 59.73; H, 5.01; N, 

4.35%. Found: : C, 59.52; H, 5.27; N, 4.21%. 

Dimethyl 4-(4-chlorophenyl)-1H-pyrrole-2,3-

dicarboxylate (6e) 

Yellow oil, IR (KBr) (νmax, cm-1): 3225(NH), 1668, 

1735(C=O). 1H NMR (500.1 MHz, CDCl3) δ = 3.86 (3 H, 

s, OCH3), 3.88 (3 H, s, OCH3), 7.06-7.43(5 H, m, arom  

and CH), 8.92 (1H, br, NH) ppm. 13C NMR (125.7 MHz, 

CDCl3):  δ = 52.69 (OCH3), 53.04 (OCH3), 123.50, 

124.91, 125.23, 125.87, 127.39, 129.40, 131.38, 133.99 

(C arom), 160.38 (CO2Me), 166.40 (CO2Me). MS (m/z, 

%): 293 (M+, 11). Anal. Calcd. for C14H12ClNO4 : C, 

57.25; H, 4.12; N, 4.77%. Found: : C, 57.11; H, 4.32; N, 

4.55%. 

 

Dimethyl 4-(4-bromophenyl)-1H-pyrrole-2,3-

dicarboxylate (6f) 

Yellow crystals, M.p. 136-138°C. IR (KBr) (νmax, cm-

1): 3275(NH), 1685, 1745(C=O). 1H NMR (500.1 MHz, 

CDCl3) δ = 3.79 (3 H, s, OCH3), 3.85 (3 H, s, OCH3), 

7.27-7.80(5 H, m, arom and CH), 9.17(1H, br, NH) ppm. 
13C NMR (125.7 MHz, CDCl3):  δ = 52.33 (OCH3), 52.83 

(OCH3), 110.39, 122.33, 129.23, 130.42, 132.22, 132.42, 

133.40, 143.40 (C arom), 161.13 (CO2Me), 170.38 
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Scheme 3: The suggested mechanism for the formation of functionalized pyrrole derivatives. 

 

(CO2Me). MS (m/z, %): 336 (M+, 29). Anal. Calcd.  

for C14H12BrNO4: C, 49.73; H, 3.58; N, 4.14%. Found:  

C, 49.95; H, 3.31; N, 4.32%. 

 

RESULTS AND DISCUSSION  

The structures of compounds 6a-f were deduced from 

their elemental analyses and their IR, 1H NMR, 13C NMR 

spectra. For example, the mass spectrum of 6a displayed 

the molecular-ion peak at m/z = 259. The 500.1 MHZ 1H 

NMR spectrum of 6a exhibited two sharp signals at δ 

3.92 and 3.96 ppm for two methoxy groups’ protons.  

The aromatic protons were observed at 6.70-7.60 ppm.  

A broad singlet was observed at δ 9.67 ppm for NH proton. 

The 13C NMR spectrum of compound 6a showed  

12 distinct resonances in agreement with the proposed 

structure. The structural assignments made on the basis of 

the NMR spectra of compound 6a were supported by its 

IR spectrum. NH group showed an absorption band at 

3275 cm-1 and carbonyl groups exhibited strong 

absorption bands at 1729, 1669 cm-1. 

A mechanistic rationalization for the reaction is given 

in Scheme 3. On the basis of the well-established 

chemistry of trivalent phosphorus nucleophiles [23-28],  

it is reasonable to assume that the initial event is  

the formation of the zwitterion 7 from the 

triphenylphosphine and the acetylenic ester. Next,  

the zwitterion is protonated by ammonium acetate.  

The resulting positively charged phosphonium ion 8 is 

attacked by the conjugate base of NH3, leading to  

α-aminophosphorous ylide 4 [20, 21, 22]. which then 

reacted with arylglyoxals 5 to produce intermediate 9 that 

underwent intramolecular Wittig reaction and then loses  

a molecule of water and aromatizes to product 6 under 

reaction condition (Scheme 3).  

 

CONCLUSIONS  

In conclusion here we report the reaction between 

dialkyl acetylene dicarboxylates, ammonium acetate and 

arylglyoxals promoted by triphenylphosphine, to produce 

functionalized pyrrole derivatives in high yields. The present 
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method carries the advantage that not only is the reaction 

performed under simple conditions but also that the substances 

can be mixed without any activation or modification.  
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