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ABSTRACT: An adaptive input-output linearization method for general nonlinear systems is 

developed without using states of the system. Another key feature of this structure is the fact that, it 

does not need model of the system. In this scheme, neurolinearizer has few weights, so it is practical 

in adaptive situations.  Online training of neurolinearizer is compared to model predictive recurrent 

training. Relationships between this controller and neural network based model reference adaptive 

controller are established. A CSTR reactor and pH control in a neutralization process illustrate 

performance of this method. Simulation studies show a superior performance with respect to a PI 

controller. 
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INTRODUCTION 

The development of the feedback linearization 

technique offers a powerful tool for nonlinear system 

control. Control schemes based on feedback linearization 

provide larger dynamic operation range than the 

conventional Jacobian linearization ones. Even though 

making the closed loop system linear in an input/output 

sense using differential geometric control methods 

appears to be very efficient, it has not been used in many 

processes. Most of these methods such as GLC require all 

process states and exact model of the plant. To relax  

these necessities, different methods have been developed 

to use the advantage of neural networks in function 

approximation. Several methods have been proposed that 

rely on the affine model of the process [1,2].  

To solve the problem of linearization of general 

nonlinear systems, Boozarjomehry et al. [3] have used 

neural networks. In this method, back propagation learning 

algorithm is used to train the neurocontroller in an offline 

 

 

 

manner. In the NN control design based on offline 

training, a process simulator and large number of data are 

required. To deal with this requirement, stable adaptive 

NN design methods based on Lyapunov stability theorem 

have been developed [4-7]. However, in these methods, 

obtaining adaptation laws need process model and its 

states. Online neural network controller, which has been 

proposed by Krishnapura et al. [8], can emulate inverse 

controller without using model of system. However, this 

method cannot be used for unstable systems.  

 In most methods described earlier, model of the 

system and its states must be known. In this paper, real-

time linearization method has been developed without 

using model of system. The paper is organized as 

follows: Section 2 describes discrete time globally 

linearizing control. Section 3 gives details of real time 

output feedback neurolinearization. Section 4 compares 

new method with neural network  based  model  reference  
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adaptive control. In section 5 two case studies are 

illustrated, and performance of the new method is 

compared to a PI and NNBMRAC controller. 

 

DISCRETE  TIME  GLC  STRUCTURE 

In this section, Discrete-time input/output feedback 

linearization Soroush et al. [9] is described. In Feedback 

linearization control, the original nonlinear model can  

be transformed into a linear model through proper 

coordinate transformation. One can place a linear 

controller with integral action around the linearized 

system in order to eliminate offset, which leads in the 

GLC structure. Input-output feedback linearization allows 

compensating for the nonlinearities of the system using 

nonlinear state feedback and nonlinear state trans-

formation. The state feedback transformation can be 

found after selecting stable linear model. The relative 

order of selected linear model must be equal or greater 

than process model. For a single-input single-output 

system, discrete time model can be assumes in a general 

form, as follows 
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It is straightforward to show that the exact sampled-

data representation of a dead-time free continuous system 

with finite relative order r always has r=1. Thus, if a 

discrete time nonlinear system of the form of Eq. (1) has  

r >1, (r-1)∆t represents the plant dead-time, whereas the 

additional delay ∆t
 
is the delay due to sampling [3,9]. 
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Where r is relative order and βi are tuning parameters. 

Linear model equation can be obtained as Eq. (3). 
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Real-time output feedback neurolinearization (RTOFN) 

To linearize system under the state feedback of Eq. 

(2), all states must be known and measurable. In the case 

that, these states cannot be measured, they can be 

estimated with an observer. Estimation of states with an 

observer need exact system model, which in the most 

cases is not available. Boozarjomehry et al. [3] proposed 

a structure that does not require availability of process 

states and its model. They combined a neural network 

state estimator and neural network linearizer, and made a 

concise structure, which does not need state estimation. 

Fig.1 shows neural networks to approximate state 

estimator and state feedback linearizer and Fig. 2 shows 

structure of combined networks. Structure of the 

Linearizer that has been used in this paper is shown in 

Fig. 2. 

 
Linearized model and external controller structure 

A popular type of closed-loop response is first- order- 

plus-dead-time one. This can be achieved by setting the 

parameters of Eq. (3) as follows: 

r,...,2l0l ==β  

Therefore, the closed loop response simplifies into: 
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Assuming unit gain for linearized system, relation 

between parameters simplifies as follows: 

10 1 β+=β                                                                        (5) 

Using a PI controller as linear controller shown in Eq. 

(6), results in  closed loop model described by Eq. (7) 
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The following methods have been proposed for online 

training of the neurolinearizer: 

 
Training algorithm 1: model predictive recurrent 

training (Indirect Training) 

In this method at first, a neural network is trained 

offline based on input-output data in order to predict the 

output of plant. At each sample point, using previous 

neurolinearizer parameters, control action is calculated 

and this signal along with previous plant outputs are fed 

to  NN  process  model.  Future  output  of   the   plant   is  
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Fig. 1: Neural networks to approximate state estimation and state feedback linearizer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Structure of control loop in real-time output feedback neurolinearization (RTOFN). 

 

predicted and is compared to output of linearized model. 

The difference between predicted outputs of linearized 

system and plant output is used as network error and is 

back propagated through linearizer network. This task is 

repeated until this error is minimized or maximum epochs 

are reached. Input structure and number of neurons in 

hidden layer of neurolinearizer is calculated through a 

trial and error procedure.  Structure of this method is  

indicated in Fig. 3. This configuration incorporating a 

process model is called ’indirect’ .Although this method 

has an appropriate performance, it has some drawbacks: 

1- To guarantee an efficient control, it requires large 

number of input-output data to train the neural network 

process model.  

2- An optimization problem is solved at each sample 

time, which has large computation�effort. 

3- This method cannot apply to unstable systems. 

Training algorithm 2: Specialized learning (Direct 

training) 

Neurolinearizer structure 

In recent years, linear in parameter networks have 

been found a lot of attention in control [6,10,11]. 

However, such networks have some drawbacks because 

of the following reasons:  

1- Good performance of such neural networks in 

function approximation depends on suitable selections of 

activation functions and their thresholds which is a 

difficult task [10]. 

2- RBF neural networks have the property of locality in 

data representation. This means that each unit is responsible 

for a relatively small subset of the network input space. 

Appropriate choice of activation functions would have to 

account for input space dimensionality. Sufficient number 

of  RBF  units  necessary  to  represent  a  function  of (n) 
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Fig. 3: Indirect training of neurolinearizer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Direct training of neurolinearizer. 

 

arguments, grows exponentially with (n) [12]. 

3- Significant overlap among the basis functions 

makes the learning more difficult [13]. 

Multilayer nonlinear feed forward NN’s are 

theoretically capable of representing arbitrary mappings 

[14], but these conventional networks have a large 

number of connection weights. For online learning 

methods, the learning is computationally demanding 

because all the weights should be updated in each 

learning cycle, and this makes the training speed one of 

the crucial issues of online neuromorfic control algorithms. 

To fulfill the short training time requirements of online 

neural networks, network structure should have the 

minimum of synaptic weights. Hence, neural network that 

has been used in this paper is a nonlinear feed forward 

network with one hidden layer, which consists of one 

neuron. Nonlinear structure of feed forward network with 

sigmoid activation functions forms a strong compound, 

which is capable of compensating plant nonlinearities. 

 

Input structure 

The controller input vector elements are often chosen 

intuitively without any formal justification. In this 

paper,the controller network has just two input terms, 

output of external linear controller and output of process 

at the previous sampling instant. prevoius outputs of 

controller is not needed because GLC is a static mapping 

with respect to control action [15]. For online training, 

Psaltis et al [16] proposed a learning algorithm called 

specialized learning that allows the neural controller to 

learn in an adaptive way. They used the difference 

between the actual output of the plant and the desired 

output to change the weights, and considered the plant as 

an  additional,  unmodifable layer of the neural controller.  
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The Training steps of the networks used in this paper 

are as follows: 

1- Initial weights of neurolinearizer have to be set to 

small random numbers. 

2- Sum of square error of some of previous sampling 

times are back propagated through neurolineaizer 

network. This error is the difference between process 

output and the output of linear model. This short error 

function length provides sufficient information to adapt 

neurolinearizer parameters in the presence of time delay 

or processes with relative order greater than one. 

3- The inputs to the network should be normalized 

into a small region, depending on their magnitudes.  

4- Process gain is substituted with its sign using prior 

knowledge of the plant. 

5- The learning rate has to be chosen carefully to 

prevent sluggish or unstable response. 

6- Parameters of Linear model in Eq. (3) should be 

selected such that this model represents the linearization 

of nonlinear system in high gain operating ranges.  

7- An important feature of this method is that only 

one epoch is required for the weights updating algorithm.  

 

Neural network Based model reference adaptive control 

(NNBMRAC) 

The model reference adaptive control scheme consists 

of four blocks: process, controller, reference model, and 

adaptor. The objective of a model reference adaptive 

control (MRAC) is to obtain a control law and an 

updating law, such that the closed loop response tracks a 

reference model. For nonlinear systems, controller design 

procedure is based on input-output linearization [17].  

An alternative approach for nonlinear MRAC is to adapt 

the weights of a neural network controller to achieve 

input-output linearization [18, 19]. Although real-time 

output feedback neurolinearization (RTOFN) seems to be 

similar to neural network model reference adaptive 

control (NNBMRAC), there are several dissimilarities 

between these two methods, which are as follows: 

1- In NNBMRAC controller, neural network is the 

only controller. In RTOFN, neural network is used to 

compensate process nonlinearity. 

2- For highly nonlinear systems, whose gain changes 

several orders of magnitude, performance of RTOFN is 

superior with respect to NNBMRAC controller because 

of external integrator, which is used in RTOFN structure. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: pH control system. 

 

Simulation studies 

Two standard benchmarks frequently used by control 

research community are selected to demonstrate the 

performance of the proposed methods. These systems are 

a pH neutralization system and a CSTR reactor. The pH 

neutralization process is a highly non-linear process in 

which the process gain varies over several orders of 

magnitude depending on the buffer flow rate and 

operating condition.  The model of the pH neutralization 

process which is used in this study follows that proposed 

by Henson et al. [20]. The other system is a CSTR 

reactor, with steady state multiplicities [9]. The control 

objective in this benchmark is temperature control of the 

reactor. The performance of RTOFN, NNBMRAC and  

PI controllers are compared against each other. 

 

pH control in a neutralization process 

pH neutralization is quite common in the chemical 

process industry. Due to its highly nonlinear  behavior, 

pH neutralization processes have been used as the 

benchmarks in nonlinear process control studies [20-23]. 

As shown in Fig. 5, this system has three input stream, 

including acid(HNO3), buffer (NaHCO3) and base 

stream (NaOH), respectively. The operating conditions 

and parameters of the process model are shown in table 1. 

PID controller parameters are those used by Nahas et al. 

[24]. Structure of neurolinearizer for this system is shown 

in table 2. Set point tracking of this controller is shown in 

Fig. 6. Regulatory performance of two controllers is 

shown in Fig. 7. Since this process has a delay of  

two-sample points [24], and its relative order is one,  

the length of error function which has the best 

performance is 3. 

Fa 

Fb 

Fc 

Fe 

pH 
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Table 1: Parameters of neutralization process. 

(CHNo3)a=0.003  M
 

(CHNo3)b=0  M
 

W1a = 0.003  M pK1 = 6.35
 

(CNaHNo3)a=0  M
 

(CNaHNo3)b=0.03  M W2a = 0  M pK2 = 10.25
 

(CNaOH)a=0  M
 

(CNaOH)b=0.03  M
 

W1b = 0  M pHe=7.00
 

(CHNo3)c=0  M
 

Fa=16.6  mL/s W2b = 0.03  M  V = 2900 mL 

(CNaHNo3)c=0.0005  M
 

Fb=0.55  mL/s W1c = -0.00305  M  

(CNaOH)c=0.003  M
 

Fc=15.5  mL/s W2c = 5’ 10-5  M  

 

Table 2: Structure of networks used in each method for pH system. 

Neural network Structure (input×hidden×output) Inputs outputs 

Process model 4 ×10×1 pH(k-1), pH(k-2), pH(k-3), Qb(k)
 

pH(k+1)
  

Neurolinearizer 2×1×1 pH(k), v(k-2) Qb(k)
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Set point-tracking capability of controller for pH 

system. 

 
Since variation of process gain near neutralization 

point (6<pH<8) is considerable, Peaking phenomena, 

which is the characteristic of high gain systems, is 

observed in NNBMRAC, while it is not observed in 

RTOFN. Fig. 8 represents this comparison. 
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Fig. 7: Closed loop response of pH system to disturbance 

given in table 3. 

 
Temperature control of a CSTR reactor 

This method is applied to a CSTR reactor shown in 

Fig. 9 in which the following reactions take place. 

→

→

→�
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DA

UA

UA

3

2

1

k

2
k

1
k

                                                                   (9) 

Where U1 and U2 are undesired side products, and D 

is desired product. The feed contain only A component. 

Temperature control is obtained by manipulating the heat 

input. This process is an unstable system with steady state 

multiplicities  so,   model   predictive   recurrent   training  
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Table 3: Disturbance patterns on acid and buffer flow rates. 

Sample time� Buffer flow rate(ml/s)� Acid flow rate(ml/s)�

0 0.55 16.6 

1800 1.2 14.6 

3600 2.0 18.6 

5400 1 16.6 

7200 0.05 16.6 

9000 
0.55 16.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Performance of RTOFN with respect to NNMRAC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: CSTR reactor. 

 

Table 4: Parameters of the CSTR reactor. 

K10 = 2×103    m6.Kmol-2.s-1
 

E1 = 4.90 ×104    Kj.Kmol-1 

K20 = 3.4×106    Kmol0.5.m-1.5.s-1 E2 = 6.50×104    Kj.Kmol-1 

K30 = 2.63×105    s-1 E3 = 5.70×104    Kj.Kmol-1 

-∆H1 = 4.50×104    Kj.Kmol-1 n1 = 3.00 

-∆H2 = 5×104    Kj.Kmol-1 n2 = 0.5 

-∆H3 = 6×104    Kj6.Kmol-1 n3 = 1.00 

R= 1000    Kg.mol-3 c = 4.2  Kj.Kg-1.K-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Disturbance rejection of the CSTR reactor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11: Closed loop response of the CSTR system to setpoint 

changes. 
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Table 5: Operating conditions of CSTR reactor. 

CAi = 10    Kmol/m3 CDss = 4    Kmol/m3 T(0) = 295.2 K
 

CA(0) = 0.1    Kmol/m3 V=0.01    m3 Tss = 400 K 

CD(0) = 0    Kmol/m3 t = 300    s Ti = 295.2  K 

CAss = 1.3204    Kmol/m3 Qss = -1.0303    kj / s
 

 

 

Table 6: Structure of neurolinearizer for CSTR system. 

Neural  

network 

Structure 

(input×hidden×output) 
Inputs 

outp

uts 

Neurolinearizer 2×1×1 T(k-1),v(k)
 

Q(k)
 

 

cannot be used with this system. Parameters of this 

system is shown in tables 4 and 5. Structre of 

neurolinearizer is summmerized for this system is 

summerized in table 6. Performance of RTOFN controller 

for this process is not differing from NNMRAC. The 

parameters of PI controller (kc=1.446,  τi=80) are those 

used by Boozarjomehry et al. [3].  

Fig. 10 presents the regulatory performance of 

controller when an unmeasured step change occurs in 

feed temperature 1000 s after the plant startup. Set point 

tracking of this controller is shown in Fig. 11. rror 

function length  which is selected for this system is one 

because there is no delay and its relative order is one. 

RTOFN outperform PI controller in both set point 

tracking and disturbance rejection. 
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CONCLUSIONS 

On-line neuromorphic input-output linearization of 

general nonlinear systems has been proposed. In this 

method,  there  is  no  requirement to know process model 

and its states. All the othe alternative methods used for 

neuromorphic I/O linearization have an offline manner, 

which requires a large network and tarining data set for 

its training. In the proposed method this drawback has 

been resolved, and there is no need to have a large data 

set  obtained from excitation of the system. In real-time 

output feedback neurolinearization, the number of 

network synaptic weights is severely lower than those of 

the network used on Offline neurolinearization and this 

results in the ease of training.  

The performance of the proposed method has been 

compared to neural network model reference adaptive 

control and an optimal PI controller. RTOFN outperforms 

both NNMRAC and PI controller in both set point 

tracking and disturbance rejection in the case of higly 

nonlinear system pH. performance of RTOFN is similar 

to NNMRAC for The CSTR system. 

 

Nomenclatures 

c                                             Heat capacity of the mixture 

CA                       Concentration of reactant A in the ractor 

CAss               Concentration of reactant A in the reactor at  

                                                                          steady state 

iAC           Concentration of reactant A in the reactor feed 

CD                   Concentration of product (D) in the reactor 

ssDC        Concentration of desired product at steady state 

Ei                                        Activation energy of reaction i 

Fa                                                                  Acid flow rate 

Fb                                                             Buffer flow reate 

Fc                                                                  Base flow rate 

K0i                                  Frequency factor of the reaction i 

ni                                                      Order of the reaction i 

pKi                            Logarithm of equilibrium dissocition  

                                                         constant for reaction i 

Q                                                   Heat input to the reactor 

Qss                             Steady-state heat input to the reactor 

r                          Relative order of the process output with  

                                                               respect to its input 

Qb(k)                                Base flow rate at k sample point 

R                                                      Universal gas constant 

T                                                           Reactor temprature 

t                                                                                   Time 

Ti                                                               Feed temprature 

Tss                            Steady state temprature of the reactor 

u                                                       Manipulating varaible 
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U1,U2                                                   Undersired products 

v                                                 External controller output 

V                                                                Reactor valume 

x                                                    Vector of process states 

x*                                   Vector of estimated process states 

y                                                                   Process output 

ysp                                                              Output set point 

βi                                           Controller tuning parameters 

r                                                                  Mixture density 

DHi           Tuning parameter heat of reaction of reactant i 

pH (k)                                                 pH at k sample point 
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