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ABSTRACT: In this work a glass micromodel which its grains and pores are non-uniform in size, 

shape and distribution is considered as porous medium. A two-dimensional random network model 

of micromodel with non-uniform pores has been constructed. The non-uniformity of porous model is 

achieved by assigning parametric distribution functions to pores throat and pores length, which was 

measured using image analysis technique. Statically derived expressions have been used for 

prediction of macroscopic properties of porous model including: dispersion coefficients, 

permeability-porosity ratio and capillary pressure. The results confirmed that predicted transport 

properties are in good agreement with the available experimental data. 
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INTRODUCTION 

Transport properties of porous media are commonly 

determined by experimental methods which are most 

often time consuming and expensive. The geometry and 

topology of the microscopic pores control the fluid 

content and transport properties of porous medium, e.g., 

dispersion, capillary pressure and permeability. On the 

other hand, the exact solutions of fluid flow and 

convection-diffusion equations at the pore scale are 

extremely difficult to obtain, due to the complexity of the 

boundary conditions at the irregular pore/grain interface 

[1]. Therefore, it is important to have a  reliable  tool  that  

 

 

 

can provide plausible estimates of macroscopic properties. 

Instead of searching for exact solution, research efforts 

have focused on ways to simplify the irregular pore 

systems. Such simplified equivalent versions of porous 

medium are called 'network model', which can be the 

only possible means of understanding the flow through 

porous media from a microscopic standpoint [2]. 

Network models can be applied either as stochastic 

models or not, depending on whether the pores which 

constitute the connections in the network are taken as 

having other than a probability distribution of sizes.  
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In a sense, the randomly oriented capillary models are 

simply more general network models in which the 

connecting links in the networks are permitted a distri-

bution of orientation, radius and length rather than being 

fixed as, for example, the edges of regular polyhedral. 

The general model of randomly oriented pores is 

exemplified by the work of Scheidegger [3] which 

employed the movement of a random particle, under 

laminar flow conditions, through a homogeneous 

isotropic porous medium comprising system of capillaries 

with identical macroscopic characteristics. de Josselin de 

Jong [4] visualizes a porous medium as a randomly 

interconnected straight channels of equal sizes, orientated 

at random, uniformly distributed in all directions, in 

which average uniform flow takes place. Saffman [5] 

studied a similar geometric porous structure in which 

identical capillaries are orientated randomly. The pressure 

gradient in the medium was taken as linear with distance 

with an imposed fluctuation described by a Gaussian and 

isotropic probability density function. The last presented 

models have been extended by Greenkorn and Kessler [6] 

to the case of non-uniform media by use of a two 

parametric density function, beta distribution, both for the 

radii and for the length distribution individually. 

However, in this work a four-parametric probability 

density function has been used to express the pores throat 

and pores length distributions of the micromodel which 

were measured using image analysis technique. 

It is well known that network modeling with disparate 

representations of the pore space have been also 

extensively employed in the simulation studies of 

multiphase flows in porous media. The various pore 

network models have been reviewed by, e.g., Sahimi [7]. 

Most models are based on a regular topology that does 

not reflect the random nature of real porous rock. In 

contrast, recent advances in rock imaging techniques, 

micro focused computed tomography [8], capture wealth 

of information about the microstructure of real porous 

medium, and provide a quantitative jump in the pore 

network model capabilities [9,10]. However, in this work 

an economical and easy tool, image analysis technique, 

was employed for generating the network model of 

porous micromodel. 

Micromodel is small-scale artificial two-dimensional 

porous model which is known as a novel approach that 

can simulate natural porous media up to a certain degree 

[11]. The types of micromodel studies reported in the 

literature vary widely in their methods and applications 

[11]. Most of micromodel researches reported in the 

literature have been observational, and only a few of 

these studies attempted to quantify their observations. 

Also, very little attention has been paid on estimation of 

transport properties of micromodel which being based on 

statically measurements of pore size characteristics. 

Dispersion in a porous medium arises from spatial 

fluctuations of the velocity field, which, in turn, are 

governed by the chaotic nature of the pore space 

morphology [12]. The numerical calculation of dispersion 

coefficients in porous media has been based on pore 

network simulations [13], Lattice-Boltzman algorithms 

[14], volume averaging [15], and method of moments 

[16]. 

A common problem in simulating solute transport in 

porous medium is numerical dispersion, which artificially 

smears concentration fronts in simulation results [17]. 

Varieties of approaches have been developed to 

overcome numerical dispersion. One effective approach 

is the random particle method [18, 19]. In this method, 

solute mass is represented by a large number of particles, 

and advection and dispersion are determined by the 

movement of particles. Unlike other commonly used 

methods based on finite element or finite difference 

schemes, random particle method does not require 

numerical solutions of partial differential equations  

[2, 19]. In this work statistical approach of random 

particle method was applied to a simple non-uniform 

model, and the longitude and transverse dispersion of 

micromodel were estimated. 

The historical development of the capillary pressure 

phenomenon and measurement methods such as the 

centrifuge, mercury injection and porous plate have been 

discussed and documented by various researchers [2].  

On the other hand, a few of researchers attempted to derive 

mathematical model of capillary pressure function, e.g., 

an analytical derivation of a parametric capillary pressure 

function has been demonstrated by Ghazanfari et al. [20]. 

However, in this work the capillary pressure curves are 

determined by a model which is in integral from. 

Absolute permeability of a porous medium is 

depending on pore morphology and porosity [21], and is 

determined by measuring the pressure drop/flow rate 

response  and  using  Darcy’s  Law  [2].  In  this study the  
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absolute permeability-porosity ratio of porous model is 

calculated as a function of average pore diameter. 

In this work a glass type micromodel which its grains 

and pores are non-uniform in size, shape and distribution 

was used as porous medium. The network of pores in the 

porous model is regarded as a network of randomly 

capillaries with diameters and lengths governed by 

probability distribution functions. The model can be 

made anisotropic by distributing the orientation angle. 

The macroscopic properties of flow are related to the pore 

structure of micromodel. In order to model and then to 

estimate the transport properties of flow through porous 

medium, the pore size and pore length distributions of 

micromodel were measured using image analysis 

technique. A four parameter probability distribution 

function was used to express the measured distributions. 

A capillary pressure saturation mathematical model was 

developed and used for prediction of measured capillary 

pressure data. The statistical approach of random particle 

method was applied for derivation of dispersion 

coefficient models. As a related development an estimation 

of the absolute permeability-porosity ratio is also 

presented. 

 

STATISTICAL  DISTRIBUTIONS 

In general, the pore size distribution can be described 

in terms of cumulative distribution function, which is 

equal to probability that pore diameter is equal to or less 

than D, or in terms of probability density function, which 

is equal to derivative of cumulative distribution with 

respect to pore size [22]. In practice, one can measure 

pore size distribution function giving the fraction of pore 

space which has a pore diameter greater than a given 

value. The basic empirical statistical model, f(d), chosen 

for this study is based on parametric probability density 

function proposed by Ghazanfari et al. [20] as: 
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Where α, ε and n are adjustable parameters, and they 

are related to physical properties of porous model. More 

details about the physical significance of model 

parameters and the behavior of proposed model by 

changing the  parameters  are  given  elsewhere [23].  

Dmin and Dmax is minimum and maximum pore throat 

or pore body size dependent to applied case, respectively. 

If Dmin goes to infinity parameter α is equal to one. 

Therefore, α=1 is corresponding to threshold capillary 

pressure which equals zero [23]. Assuming that pore 

length, l, distribution is also obeys from probability 

distribution function of equation (1) as follow: 
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Where lmin and lmax are minimum and maximum pore 

lengths, respectively. The parameters of equations (1) and 

(2) are calculated by fitting the statistical model to the 

measured data of pores throat, pores body and pores 

length distributions of porous model. Most of probability 

distribution function models are two parametric. Lack of 

flexibility to simulate natural petrography phenomena 

and particularly suffering from the shortcoming of 

infinite range is contrary to the finite size of pore diameter 

and pore length of equations (1) and (2), respectively. 

 

EXPERIMENTAL   DESCRIPTIONS 

Micromodel 

The glass micromodels, a synthetic porous medium 

that lends itself well to achieving the experimental 

requirements of this work, are mostly fabricated by 

etching the desired pore network pattern on two plates of 

mirror glass which are then fused together. Using this 

method, highly intricate and detailed patterns can be 

etched with the dimensions of pores and throats as low as 

a few microns. Details of the model production procedure 

are  given  elsewhere  [23, 24].  

The  micromodel  used  in this study included grains 

and pores which are non-uniform in size, shape and 

distribution. Fig. 1 shows the micromodel  which  is  

saturated  with  the colored water. the black and white 

prints the color of water and grains are gray and white, 

respectively. 

 

Setup 

The setup is combined an etched glass micromodel, a 

camera, a precise pressure transducer and a precise low 

rate pump which is used to control the flow rate of fluids 

through  micromodel.  The  micromodel   was   connected 
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Fig. 2: Schematic of micromodel setup. 

 

to the flow lines by specially designed clamping system. 

The pump is used to inject working fluid depending on 

the request at a fixed rate from a minimum of 1.5e-5 to a 

maximum 10 cc/min into the micromodel. A high 

resolution color TV camera with long distance focusing 

lens attachment mounted on a racking system was used to 

observe and record on video the events in micromodel. 

Experiments were conducted at room temperature and 

using a horizontal mounting. The Schematic of experi-

mental setup is shown in Fig. 2. Detailed descriptions 

about the experimental setup are given elsewhere [23]. 

 

Micromodel properties 

Absolute permeability of micromodel was determined 

using Darcy’s Law by measuring the pressure drop/flow 

rate response. Distilled water at room temperature was 

injected into the micromodel at desired injection flow 

rate, and the pressure drop between the injection port and 

the exit was measured. Four different pressure drop and 

flow rate data sets were obtained and the best fitting 

straight lines passed the origin. 

The porosity of micromodel was measured using 

image analysis technique. Fig. 1 shows the micromodel 

which it has been fully saturated with colored water. The 

etched depths of the pores in the micromodel are relatively 

uniform, so the ratio of colored area to the total area of 

micromodel, areal porosity, is equal to porosity. Due to 

increase the clearance, the color of water and grains has 

been changed to gray and white, respectively. A generated 

image analysis computer code and conventional enhanced 

image software are used to process the image. 

During the injection of colored water into the 

micromodel    with    known   flow   rate,   for   a   desired 

Table 1: Physical and hydraulic properties of micromodel. 

Length (cm) 7.5 Width(cm) 1.2 

Absolute permeability 

(D) 
13.3 Average areal porosity 0.485 

Average depth  

(micron) 
32 Pore volume(cm3) 0.014 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Micromodel pattern which is fully saturated with 

colored blue water. 

 

incremental time, the incremental area occupied by the 

colored water was measured using image analysis 

technique. Incremental time multiply by injection flow 

rate divided by incremental area is equal to average 

etched height on that region. The pore volume is equal to 

areal porosity multiply by average etched height. The 

physical and hydraulic properties of micromodel are 

shown in table 1. 

 

Pore size distribution 

The pore size distribution analysis was performed on 

micromodel shown in Fig. 1 which is saturated with the 

colored water. The grains and pores of micromodel 

shown in this figure are non-uniform  in  size,  shape  and  
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distribution. This non-uniformity of geometry and 

topology of the microscopic pores control the fluid 

content and transport properties of porous medium, e.g., 

dispersion, capillary pressure and permeability. Therefore, 

it is important to measure the pore size characteristics of 

porous model. 

A pore can be described in term of its diameter, length 

and orientation in a flow field. In systems of interconnected 

pores this implies a partitioning of pore space into pore 

body, pore throat and pore length. In fact, pore structure 

of porous medium is described by the pore throat, pore 

body and pore length distribution and a pore size 

distribution curve represents the cumulative fraction of 

total pore volume within porous media sample made up 

by particular ranges of pore sizes. 

Dimensions of pores throat, pores body and pores 

length of porous model are computed from data obtained 

by two dimensional image analysis as follow: the area of 

pore body and the width of pore throat within a 

representative region of the micromodel were measured 

by the image analysis of porous model is shown in Fig. 1. 

An important condition for successful application of 

image analysis in the statistical analysis of the porous 

model is a sufficient contrast between pores and grains. 

Employing micromodel average etched depth, the total 

volume of the pore body was calculated by multiplying 

the planar pore area with the height. An average diameter 

was determined using an equivalent sphere whose volume 

was equal to the volume of the pore body.  

To determine the pore throat size, the width of pore 

throat was measured and the cross-sectional area was 

obtained by multiplying by the height. An average pore 

throat diameter was determine from the area of the circle 

equal to the cross sectional area of a pore throat. The pore 

length is the distance between two connected pore bodies 

along the flow field. To present the exact values of 

measured pores size characteristics, the frequency 

distribution diagrams of pore throat and pore body 

diameters in the form of f(D) versus D-Dmin and pore 

lengths in the form of f(l) versus l-lmin are plotted on  

Fig. 3a-c. These figures provide the minimum, maximum 

and average values of pores throat diameter, pores body 

diameter and pores length, also. The parameters α, n, of 

pore throat and pore body size distribution models could 

be estimated by fitting the statistical model f(D) of 

equation (1) to the measured data of pore throat and pore 

body size distributions on the Figs. 3a and 3b, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: (a) Frequency distribution diagrams of porous model 

pore throat size (b) pore body size (c) pore length. Solid lines 

are the fitted statistical model behavior. 
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Table 2: Fitted  parameters of pore throats diameter, pore bodies diameter and  pore lengths distribution models, 

 and the measured minimum, maximum and average values. 

 
N ε α Min. (µm). Max. (µm) Ave. (µm) 

Pore throat 5.1 55 1.07 4 80 41.0 

Pore body 1.8 48 1.09 4 134 44.5 

Pore length 1.6 50 1.11 5 165 49.4 

 

The parameters α, n, ε of pore length distribution 

model could be estimated by fitting the statistical model 

f(l) of equation (2) to the measured data of pore length 

distribution on the Fig. 3c. The measured minimum, 

maximum and average values of pores throat and pores 

body diameter, pores length and the fitted parameters of 

distribution models are given in table 2. 

The plotted solid line in the Fig. 3a-c is the behavior 

of the statistical distribution functions of equations (1) 

and (2) with the models parameters of the table 2. 

 

MATHEMATICAL  MODELING 

One of the difficulties in calculating the transport 

properties of flow through porous media is that the 

detailed geometry of medium is not usually known and 

the flow field can not be computed in detail. Therefore, 

theoretical method is at the present confined to the 

investigation of models which can be handled 

mathematically. 

 

Absolute permeability 

The pore space model is approximated by a random, 

statistically anisotropic, network of straight cylindrical 

capillaries of length l and diameter D, several capillaries 

starting and finishing at each junction. The porous model 

is two dimensional. The pore element in this network 

which is presented in Fig. 4 is oriented by an angle θ 

from the y axis. It is clear that 0 ≤ θ ≤ π for the case of 

flow in the x direction. 

Assume the size, length and orientation of pore 

elements are independent then the distinct probability 

distribution functions of pores size, f(D), and pores 

length, f(l), are as equations (1) and (2), respectively. The 

model is conceived as large number of randomly 

intersecting pore element. The probability of a given pore 

exists with size in the range l to l+dl, D to D+dD, and θ 

to θ + dθ is given by the product of the independent 

probabilities such as: 

 

 

 

 

 

 

 

 

 

Fig. 4: Pore element description. 

 

θθ= dsin.dD)D(f.dl)l(f
2

1
dP                                        (3) 

Where the coefficient of 1/2 is normalization factor, 

and is equal to 1/2π for the case of 3D pore element. The 

permeability of the model is found by relating the average 

velocity in a pore element to the average velocity in the 

ensemble. Consider the bulk flow through the model is 

only in the x direction, and consider the Reynold number 

of flow through capillaries is small, then according to the 

Hagen-Poiseuille equation: 

θ
∂

∂

µ
−= sin

x

p

32

D
v

2

                                                        (4) 

The components of this velocity are: 

θ=θ= cosvv;sinvv yx                                      (5) 

The average velocities in each direction for the 

ensemble of pores are found by the integrating of the 

velocity components in equation (5) over the entire range 

of pores size and orientation such as: 

�� θ=θ=
P

y
P

x dPcosvv;dPsinvv                     (6) 

Where dP is given by equation (3) and integrating 

limits are, the range of D, l and θ. The integrating of the 

average velocity in the y direction is 0v y = . The average 

velocity in the x direction is: 

X 

Y 
 

θθθθ 
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µ
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Where 	D� refers to average value of pores throat 

diameter. The average pore velocity for a fluid flowing in 

porous medium is given by Darcy law as: 

x

pk
V

∂

∂

µφ
−=                                                                  (8) 

Where k, µ, φ, V, p are absolute permeability, 

viscosity, porosity, Darcy velocity and pressure, 

respectively. Since xvV = , combination of equation (7) 

and equation (8) yield: 

48

Dk 2�	
=

φ
                                                                     (9) 

It might be mentioned that without considering the 

statistical concepts the right hand side of equation (9) the 

factor 1/48 become 1/32 which is a result of direct 

combination of Darcy’s law and Hagen-Poiseuille 

equation [2]. 

 

Capillary pressure 

Capillary pressure in porous media is simply defined 

as the pressure difference existing between two 

immiscible fluids, one of which wets the surfaces of the 

rock in the presence of the other. When viscous and body 

forces are negligible, the configuration of two fluids in 

porous media is governed by the Young-Laplace equation 

which relates capillary pressure Pc to the curvature of the 

interface between two fluid phases: 

σ= CPc                                                                        (10) 

Where Pc is applied pressure, σ is the interfacial 

tension between them and C is the sum of two principal 

curvatures, or twice the mean curvature of the interface. 

Suppose that the pore throat have cylindrical configuration. 

Then the radiuses of curvature are equal, so C=4/D. In 

spite of the fact that equation (10) describes a static 

configuration, it is commonly applied to the displacement 

of one immiscible phase by another, when that 

displacement occurs sufficiently slowly. 

The modeling to be undertaken refers to the capillary 

pressure de-saturation named it drainage process where a 

non wetting fluid is forced into pore space originally 

occupied by a wetting fluid. Such displacement and 

replacement will occur as long as a pressure difference 

between the non wetting and wetting fluids is greater than 

that to be associated with the capillary pressure that 

balances the forces so that the fluid-fluid interfaces 

remain stationary in the pore throat [25]. 

Since the capillary pressure of pore depends on its 

diameter, in the analysis presented here the assumption is 

made that the maximum equivalent pore throat diameter 

Dmax corresponds to threshold  capillary pressure Pthr  

at the 100 % water saturation Sw, and the minimum 

equivalent pore throat diameter Dmin corresponds to 

maximum capillary pressure Pcmax at the residual water 

saturation Swr. For a porous medium initially completely 

filled with the water, define VP as the total pore volume 

occupied by water. During drainage process, the change 

of volume of water into the pore space of the porous 

model decreased by a differential saturation dSw is 

VPdSw. This saturation change results from invading fluid 

entering all pores in the model of diameter D. So one can 

easily write: 

dD)D(f)4D(lNdSV 2
wP π�	−=                                  (11) 

Where N is the number of pores and 	l� is average of 

pore lengths. Equation (11) is equivalent to: 

P
2

w V4dD)D(fDlNdS π�	−=                                    (12) 

Since pores diameter and pores length are 

independent, the term VP in the right hand side of 

equation (12) is equal to N	l�π	D�2/4. So: 

22
w DdD)D(fDdS �	−=                                            (13) 

The capillary pressure in a partially saturated pore is 

calculated by equation (10). Based on this equation, as 

the diameter of pore become smaller the capillary 

pressure will increase while the water saturation will 

decrease. Therefore, as the pore diameter varies from 

Dmin to Dmax, water saturation varies from Swr to 1. 

Integrating equation (13) after substituting the pore 

diameter from equation (10) to equation (1), and omitting 

the term 4σ/Pcmax result in: 
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At the residual wetting saturation SWr the 

corresponding  capillary  pressure  Pcmax  is assumed to be  
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much greater than the measured capillary pressure, 

Therefore the omitted term in equation (14), 4σ/Pcmax, is 

negligible. Equation (14) is the capillary pressure water 

saturation model. The model parameters can be 

calculated by fitting the prediction of the model to 

available data. Generally, the term of capillary pressure 

used in this study should be considered as being the 

macroscopic capillary pressure for both static and 

dynamic fluid flow conditions [26]. 

 

Dispersion 

Hydrodynamic dispersion in a porous medium occurs 

as a consequence of two different processes: (i) molecular 

diffusion, which originates from the random molecular 

motion of solute molecules, and (ii) mechanical dispersion, 

which is caused by non-uniform velocities and flow path 

distribution. Molecular diffusion and mechanical dispersion 

cannot be separated in a flow regime. The transport process 

of a non-reacting solute in saturated porous media is 

described by the macroscopic convection-diffusion 

equation, mass conservation law, as follow [27]: 

t
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Where C is the solute concentration, t is time, vx and 

vy are the components of flow velocity, DL and DT are  

the hydrodynamic longitude and transverse dispersion 

coefficients, respectively. 

The solution of the convection-diffusion equation, 

Equation (15), is difficult due to the co-existence of 

spatial first and second order terms. The first order term, 

which describes the advective motion, introduces a 

hyperbolic character, whereas the second-order term, 

which describes the diffusive/dispersive motion, intro-

duces a parabolic character. Up to date, there exists no 

technique which yields satisfactory results under general 

hydrogeologic conditions and for practically feasible 

discretization. Numerical solution techniques can be 

classified as Eulerian, Lagrangian and mixed Eulerian-

Lagrangian. In the well-established Eulerian approach, 

the equation (15) is solved on a stationary grid. Common 

solution techniques are finite difference, finite element or 

finite volume methods. These kinds of methods are well 

suited for solving parabolic equations like the flow 

equation or the diffusion equation. However, for 

advection-dominated problems grid-based methods suffer 

from numerical dispersion and numerical oscillations.  

To avoid these problems, severe stability constraints 

restricting the grid spacing and the size of the time step 

have to be met. One of the effective approaches to 

overcome this problem is the random particle method. 

The adaptivity of particle methods and the straightforward 

physical interpretation of their results make them a 

promising alternative to established grid-based methods 

in the field of solute transport dynamics in groundwater. 

The interest in particle methods is big due to the fact that 

accurate solutions not suffering from numerical 

dispersion and artificial oscillations can be obtained at a 

competitive computational cost. 

The random particle is a marked fluid particle as it 

wanders through the porous medium selecting elemental 

pores for each step according to the prescribed 

probability function. Each passage of a particle through 

an individual pore is a step in random walk. The 

properties derived here will be fulfilled after a particle 

has completed a very large number, n, of statistically 

independent steps.  

At each junction the probability of path choice must 

be related to the probability of existence of a pore, 

equation (3), and to the fluid velocity at a junction. It is 

assumed that a marked particle takes a random walk 

through the model selecting pores proportional to the to 

the velocity,v, given by equation (4) as: 

dP
M

v
dE =                                                                   (16) 

where, M is the normalization constant. Substitution 

equations (3) and (4) into equation (16), after applying 

the normalization, since the integral over dE must equal 

unity, one can get: 

θθ
�	π

= dsin.dD)D(fD).l(d)l(f.
D

2
dE 22

2
                   (17) 

Then the displacement of a marked particle after n 

steps is a random variable with components parallel to the 

axes: 

�� θ=θ=
E

n
E

n dEcoslnY;dEsinlnX                  (18) 

Substituting equation (17) into equation (18), and 

integrating result in, π�	= 3ln8Xn  and 0Yn = . 

And the time for n steps in random variable: 
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�==
E

n dE)vl(nTT                                                    (19) 

By substituting equations (4) and (17) into equation 

(19) and performing integration, one gets, 

xn v3/ln8T
�

π�	=                                                         (20) 

Which leads to the result that a particle following the 

most probable path is transported through the porous 

medium with a velocity, xnn v)TX( = , equal to the 

Darcy velocity. For randomly orientated uniform and 

isotropic network model the factor 8/3π in equation (20) 

changes to 2/3 [4, 5]. For the sake of clarification, it 

should be mentioned that for a randomly oriented 

uniform and isotropic network model the pores have 

equal diameter and length; hence, the time for n steps 

reduces to xn v3nl2T = . However, in non-uniform and 

anisotropic network model the pores diameter and length 

are distributed. 

The longitude and transverse dispersion coefficients 

are define in terms of variance of the longitude and 

transverse displacements and the time required for such 

displacements as: 

T2

)vTX(
D

2

L

−
=                                                          (21) 

T2

Y
D

2

T =                                                                     (22) 

where, 
2)TVX( −

 
and 2Y  are the variance of the 

average displacements in the x and y directions, 

respectively. 

Since the variance of Y is the sum of the variances of 

the transverse displacement of the individual steps and 

0Yn = ; hence, 

( ) ( ) ====− �E
222

n

2

nn dEynynYYY                    (23) 

2
y

2

E

2 lndE)cosl(n σ�	=θ�  

This yields, 

222
y l4l �	�	=σ                                                            (24) 

Let us define the following dimensionless coordinates 

and time, 

21

nn

nl

YY

�	

−
=ξ                                                                (25) 

x
21

nn

vnl

TT

�	

−
=τ                                                             (26) 

It should be noticed that  ξ
 
and τ have means equal to 

zero and variances equal to 2
yσ  and 2

Tσ , respectively. 

Substituting the derived value of nT  from equation (20) 

into equation (26) we get, 

π
−

�	
=τ

3

n8

vnl

T 2
1

x
21

                                               (27) 

The subscript n in Tn is dropped for the sake of 

simplicity. The value of n satisfied equation (27) is: 

−τ�
�

�
�
�

� π
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�	

π
= 2
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2
1

x2
2

l

Tv

3

8
4

8

3

2

1
�
�

�
�
�

�

�	π
+τ�

�

�
�
�

� π
τ  

Neglecting the terms 
2τ  or )(O 2

Tσ , equation (28) 

may be written as: 
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Rearranging equation (29) and applying square rule, 

then neglecting the terms 2τ  or )(O 2
Tσ , 

τ�
�

�
�
�

� π
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�
�
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π
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                                 (30) 

Substituting the equation (30) into the equation (25), 

result in: 

−ξ�
�

�
�
�
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π
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2
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Then: 
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π
=                                                      (32) 
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The expression for the transverse dispersion 

coefficient is obtained from substituting the value of 2
yσ  

(equation (24)), variance of ξ, into equation (32). We can 

immediately get: 

x

2

T v
l

l

64

3
D

�	

�	π
=                                                         (33) 

For the sake of clarification, it should be mentioned 

that for an ensemble of randomly oriented uniform and 

isotropic network model the pores have equal diameter 

and length; and the transverse dispersion expression, can 

be derived as 16lv3D xT = [5, 6].  

If one assumed that a marked particle takes a random 

walk through the model selecting pores proportional to 

the volumetric flow rate, the resulted equations (16),  

(17), (20) and (27) to (33) will be different, and the 

transverse dispersion expression, equation (33), reduces 

to �	�	�	�	π= lD64lvD3D 222
x

4
T [23,27]. Details of 

derivation method of longitudinal dispersion expression, 

which is much longer than the transverse dispersion, for 

both cases in which a random walk through the model 

selecting pores proportional to either the volumetric flow 

rate [27] or to the velocity [23,27] are given elsewhere.  

One condition which must be satisfied in order that 

this model should apply to the actual dispersion of a 

material quantity is that the amount of dispersion that 

takes place being large in comparison with the dispersion 

due to molecular diffusion acting alone under static 

conditions. 

 

RESULTS 

Absolute permeability 

The absolute permeability-porosity ratio is a function 

of the average of pore diameter, and so depends on the 

pore size distribution function. Thus, the permeability-

porosity ratio causes dissipation due to entrance-exit 

effect. Since the flow in porous media is controlled by 

pore throat size, substituting the average of pore throat 

diameter of porous model, 41 mµ , which is measured 

experimentally, into equation (9) results in the absolute 

permeability-porosity ratio equal to 35.02 D. It is in good 

agreement with the experimentally measured value, 27.42 

D, and the error is 27.7 %. The calculations without 

considering the statistical concepts gives the absolute 

permeability porosity ratio equal to 52.53 D which it has 

a amount of error 91.5 % with the measured data.  

The foregoing discussion leads to an interesting 

possibility to determine the average pore throat size of 

porous model using permeability and porosity 

measurements with equation (9). 

 
Capillary pressure 

For a long time capillary pressure verses saturation 

data have been employed by researchers interested to the 

pore size characteristics. Since the capillary pressure of a 

pore depends on its diameter, the capillary pressure of a 

porous model depends on distribution of pore throat 

diameter. So the location and shape of capillary pressure 

curve can be defined by the parameters of pore throat size 

distribution function. The location of the capillary 

pressure versus saturation curve is defined by the position 

of its two asymptotes. At infinite pressure the capillary 

pressure touches the vertical asymptote, which indicates 

the bulk volume occupied at the infinite pressure or 

residual water saturation or may be total interconnected 

pore volume.  

When the bulk volume occupied by injected fluid is 

zero, the curve touches the horizontal asymptote which 

indicates the extrapolated displacement pressure named it 

threshold pressure. Capillary pressure and relative 

permeability both depend on the same fluid-fluid and 

rock-fluid interaction energies. Relative permeability is 

used to describe quantitatively simultaneous transport of 

two or more immiscible phases through a sample porous 

medium. If the capillary pressure vanishes, the residual 

saturations approach zero and the relative permeability of 

a phase becomes equal to its saturation. Relative 

permeability models in the literature are therefore often 

inferred from a capillary pressure correlation coupled 

with pore network models. 

The parameters of capillary pressure model, α, n, n, ε 

in equation (14), were estimated by fitting the capillary 

model to the measured capillary pressure data [28] of 

drainage process in micromodel at different of capillary 

numbers.  The circles in Fig. 5(a) to 5(d) are shown that 

the model predicted capillary pressure values in which 

matched well with the experimental data. The parameters 

of fitted model are given in table 3. The correlation 

coefficients Rxy are all above 0.985.  
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Table 3: Fitted parameters of statistical function at different capillary numbers. 

Ca Swr n ε α Rxy 

1.6e-7 0.22 8.5 120 1.04 0.997 

8e-7 0.16 7.1 96 1.05 0.995 

1.6e-6 0.13 5.2 72 1.08 0.992 

8e-6 0.11 4.1 62 1.08 0.989 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Fitted capillary pressure model and experimentally measured capillary pressure data of  

drainage process at four level of capillary number. 

 

Dispersion 

The convection-diffusion equation is valid only if the 

solute particles have sufficient time to be distributed by 

molecular diffusion between all the streamlines of a 

representative elementary volume. The characteristic time 

required for the distribution of the solute particles 

between the available streamlines is of the order 	1�2/Dm, 

where Dm is the molecular diffusion. This time must be at 

least equal to the characteristic time 	1�/V required for the 

solute to move from the injection point, x=0, to the 

observation point x. Very often, under experimental 

conditions, and in heterogeneous media like stratified 

systems this criterion breaks down and in this case the 

equation   of   permanent  dispersion  is  no  longer  valid.  
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Therefore, the question is how to describe this 

transient dispersion process mathematically, which in not 

the purpose of this study. 

Molecular diffusion affects the material quantity 

moving through a pore in two ways. First, the material 

quantity diffuses sideways across the pore so that an 

element of material quantity does not stay on a streamline 

with constant radius but spreads out over the neighboring 

streamlines. The second is transport of material quantity 

by diffusion along the pore. Here, the value of the ratio of 

longitude diffusivity characteristic time to radial diffusivity 

characteristic time, (	1�2/2Dm)/ (	D�2/32Dm)≈ 100, so the 

fast radial diffusivity assumption is reasonable.  

The model results for transverse dispersion as a 

function of fluid velocity are plotted in Fig. 6 together 

with experimental data of micromodel [23]. It is obvious 

that the predictions of transverse dispersion coefficient 

using equations (33) are in close agreement with the 

measured data. For the experimental data presented here, 

molecular diffusion becomes controlling mechanism of 

transverse dispersion for the fluid velocities lower than 

0.01 cm/s. That is why no data were compared with the 

model prediction for the fluid velocities below this level. 

As mentioned earlier, the model assumes that the amount 

of dispersion that takes place being large in comparison 

with the dispersion due to molecular diffusion acting 

alone. 

The close agreement observed between prediction of 

transverse dispersion coefficient and experimental data 

shown in Fig. 6, when dispersion is large in comparison 

with the molecular diffusion, confirms that the 

assumptions of theory  and statistical network model, 

even though is simple, are not unreasonable. When 

molecular diffusion being negligible, empirical equations 

for transverse dispersion coefficient shows that this 

coefficient is proportional to the average velocity and 

pore space characteristics. This is what essentially shown 

by equation (33). 

 
DISCUSSIONS 

Actual porous media even though seemingly 

homogenous and isotropic are most often non-uniform. 

This fact may affect the transport properties of porous 

media such as dispersion, permeability and capillary 

pressure which is a result of the tortuous and circuitous 

nature of the flow paths  in  medium,  and  are  commonly  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Comparison of predicted transverse dispersion 

coefficient (solid lines) with the experimental data of the 

micromodel. 

 

obtained from experimental measurements. Any theoretical 

or numerical approach to solve the governing equations 

of flow through porous media not only needs a detailed 

understanding of the phase displacement mechanisms  

at the pore level but also an accurate and realistic 

characterization of the structure of the porous medium. 

An attractive alternative approach is an ensemble of 

randomly oriented and distributed non-uniform pores 

which the pores are supposed to be connected with each 

other at the ends and several may start or finish at this 

end-points.  

In the study presented here, a glass micromodel which 

its grains and pores are non-uniform in size, shape and 

distribution was used as porous medium. Transparent 

nature of interconnected pores and throats of the 

micromodel makes it very attractive to enhance 

understanding of various aspects of transport phenomena 

in porous medium. In order to relate the macroscopic 

properties to the structure of porous model, the pores 

throat, pores body and pores length distributions of 

micromodel were measured by applying the image 

analysis technique. The measured pore size characteristics 

expressed by a four-parametric probability density 

function in which the parameters have physical 

significances. A simple random model of micromodel 

pore structure, which is a non-uniform pores network, the 

connecting links in the networks are permitted a 

distribution of orientation, radius and length, was used  

for  prediction  of  transport  properties   of   micromodel. 

A  capillary  pressure  saturation mathematical model was 
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developed which is in integral form. The model 

parameters are estimated by fitting the statistical model to 

the measured capillary pressure data at different of 

capillary numbers. The obtained capillary pressure results 

matched quite well with the measured values. The 

random particle method in combination with the 

distribution functions of pores size and pores length, 

permitted a new derivation of transverse dispersion 

expression. Predictions from the derived model of 

transverse dispersion coefficient are in close agreement 

with the experimental data under the condition that the 

molecular diffusion is negligible. This confirms that the 

assumptions of theory and statistical network model, even 

though is simple, are not unreasonable. As a related 

development based on measured pore size distribution the 

absolute permeability-porosity ratio as a function of 

average pore diameter is calculated.  

Despite the simplicity of the proposed network model, 

it seems that it is a strong tool for investigation of the 

processes which occur in micromodel. In particular, it 

allows a priori predictions of macroscopic behavior. This 

capability is the most important aspect of the approach. 

Because there are no prescribed parameters, verifying the 

models predictions via experimental data provides 

physical insight. If the predictions are not consistent with 

the data, it can be concluded that the model does not 

account for some essential part of the physical situation, 

and then seek a more realistic model. On the other hand, a 

successful prediction allows some confidence that the 

model can be taken as a reasonable approximation of the 

actual situation and, thus, has a predictive capability and 

may be used to examine different porous medium.  

 

CONCLUSIONS 

The most important conclusions of the work are 

outlined below: 

- A simple non-uniform network model has been 

proposed and successfully used for modeling of transport 

properties in micromodel.  

- The image analysis technique was successfully 

applied for measuring of pores throat, pores body and 

pores length distributions of micromodel.  

- A parametric capillary pressure saturation 

mathematical model which is in the integral form was 

obtained. The predicated capillary pressure results 

matched quite well with the measured data at different of 

capillary numbers. 

- The estimated absolute permeability-porosity ratio 

based on statistical model of pore size distribution is in 

agreement with the experimentally measured value. 

- The absolute permeability-porosity ratio is a 

function of average pore diameter and the foregoing 

discussion leads to an interesting possibility to determine 

average pore throat size of porous model using 

permeability and porosity measurements. 

- The statistical approach of random particle method 

was applied and a new model of transverse dispersion has 

been derived. The model results match well with the 

experimental data.  

- The close agreement observed between predictions 

of transport properties models and experimental data 

confirms that the assumptions of theory and statistical 

network model, even though is simple, are not 

unreasonable. 

 

Received : 2nd October 2007  ;  Accepted : 22nd July 2008 

 

REFERENCES 

[1]  Man, H. N., Jing, X. D., Pore Network Modeling of 

Electrical Resistivity and Capillary Pressure 

Characteristics, Transp. Porous Media, 41, 263, 

(2000). 

[2]  Dullien, F.A.L., “Porous Media: Fluid Transport and 

Pore Structure”, 2nd Edition, Academic Press, New 

York, (1992).  

[3] Scheidegger, A.E., Statistical Hydrodynamics in 

Porous Media, J. Appl. Phys., 25(8), 994, (1954). 

[4]   De Josselin de Jong, G., Longitudinal and Transverse 

Diffusion in Granular Deposits, Trans. American 

Geophys. Union, 39, 67, (1958). 

[5]  Saffman, P.G., A Theory of Dispersion in a Porous 

Medium, J. Fluid Mech., 6(3), 321, (1959). 

[6] Greenkorn, R.A., Kessler, D.P., Dispersion in 

Heterogeneous, Non-Uniform Anisotropic Porous 

Media, in "Flow through Porous Media", American 

Chem. Soc., Washigton, D.C., (1970). 

[7] Sahimi, M., Flow Phenomena in Rocks: From 

Continuum Models to Fractals, Percolation, Cellular 

Automata, and Simulating Annealing, Rev. Mod. 

Phys., 65, 1393, (1993). 

[8] Holt, R.M., Fjaer, E., Torsaeter, O., Bakke, S., 

Petrophysical Laboratory Measurements  for Basin 

and Reservoir Evaluation, Mar. Pet. Geol., 13(4), 

383, (1996). 



Iran. J. Chem. Chem. Eng. Ghazanfari, M. H., et al. Vol. 28, No. 2, 2009 

 

42 

[9]  Patzek, T. W., Verification of a Complete Pore 

Network Simulator of Drainage and Imbibition, Soc. 

Petrol. Eng. J., 6, 144, (2001). 

[10] Piri, M., Blunt, M. J., Three-Dimensional Mixed-

Wet Random Pore-Scale Network Modeling of 

Two- and Three-Phase Flow in Porous Media,  

I: Model Description, Phys. Rev. E, 71, 

026301(2005). 

[11] Buckley, J.,  Multiphase  Displacement  in  Micro-

models, in "Interfacial Phenomena in Petroleum 

Technology", Edited by N. Morrow, Marcel Decker, 

New York, (1991). 

[12] Sahimi, M., Hughes, B.D., Scriven, L.E., Davis, 

H.T., Dispersion in Flow through Porous Media, I: 

One-Phase Flow, Chem. Eng. Sci. 41, 2103, (1986). 

[13] Bruderer, C., Bernabe, Y., Network Modeling of 

Dispersion: Transition from Taylor Dispersion in 

Homogeneous Networks to Mechanical Dispersion 

in Very Heterogeneous Ones, Water Resour. Res., 

37, 897, (2001). 

[14] Lowe,  C. P.,  Frenkel,  D.,  Do  Hydrodynamic 

Dispersion Coefficients Exist?, Phys. Rev. Lett., 77, 

4552, (1996). 

[15] Souto, H. P. A., Moyne, C., Dispersion in Two-

Dimensional Periodic Porous Media, Part 

II:Dispersion Tensor, Phys. Fluids 9, 2253, (1997). 

[16] Huseby, O., Thovert, J.F., Adler, P.M., Dispersion in 

Three-Dimensional Fracture Networks, Phys. Fluids, 

13, 594, (2001). 

[17] Wolfsberg,  A. V.,  Freyberg,  D. L.,  Efficient 

Simulation of Single Species and Multispecies 

Transport in Groundwater with Local Adaptive Grid 

Refinement, Water Resour. Res., 30 (11), 2979, 

(1994). 

[18] Tompson,  A. F. B.,  Gelhar,  L. W.,  Numerical 

Simulation of Solute Transport in 3D, Randomly 

Heterogeneous Porous Media, Water Resour. Res., 

26(10), 2541, (1990). 

[19] LaBolle,  E.  M.,  Fogg,  G.  E., Tompson,  A. F. B., 

Random-Walk Simulation of Transport in 

Heterogeneous Porous Media: Local Mass 

Conservation Problem and Implementation Methods, 

Water Resour. Res., 32(3), 583, (1996). 

[20] Ghazanfari, M. H.,  Rashtchian,  D.,  Kharrat, R., 

Voussughi, S., Capillary Pressure Estimation of 

Porous Media Using Statistical Pore Size Function, 

Chem. Eng. Tech., 30, 862, (2007). 

[21] Marle, C.M., "Multiphase Flow in Porous Media":, 

Gulf Publishing, Houston, (1981). 

[22] Andrew, L.Z., Aimar, P., Meireles, M., Pimbely, 

J.M., Belfort, G., Use of the Log-Normal Density 

Function to Analyze Membrane Pore Size 

Distribution: Functional Forms and Discrepancies,  

J. Mem. Sci., 91, 293, (1994) 

[23] Ghazanfari, M.H., Prediction of Multiphase Flow 

Properties in Porous Media Using Micromodel 

Experiments and Pore-Scale Modeling, PhD. Thesis, 

Sharif University of Technology, Tehran (2008). 

[24] McKellar, M.., Wardlaw , N., A Method of Making 

Two-Dimensional Glass Micromodels of Pore 

Systems, J. Can. Pet. Technol., 21, 39, (1982). 

[25]  Bear, J, Bachmat, Y., "Introduction to Modeling of 

Transport Phenomena in Porous Media", Kluwer 

Academic Publishers, Dordrecht, (1990).  

[26] Bear, J., "Dynamics of Fluids in Porous Media", 

Elsevier, New York , (1975). 

[27] Ghazanfari M.H., Kharrat, R., Rachtchian, D. and 

Vossoughi S., Statistical Model of Dispersion in 2-D 

Glass Micromodel, SPE 113343, IOR2008, Tusla, 

(2008). 

[28] Ghazanfari, M. H.,  Rashtchian,  D.,  Kharrat, R., 

Vossoughi, S., Khodabakhsh, M., Unsteady State 

Relative Permeability and Capillary Pressure 

Estimation of Porous Media, XVI International 

CMWR Conf., Denmark, (2006). 


