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ABSTRACT

An attempt 1s made to show in a straightforward way
how a body-fixed frame may be constructed in classical
and hence in quantum mechanics for a polyatomic mole -
cule with the aid of which the vibration-rotation be -

haviour of the molecule may be described.

TNTRODUCTION

More than thirty years ago Ferigle and Weber pub -
lished a beautiful and simple account (1) of the way in
which coordinate axes could be fixed in a molecule to
provide a body-fixed (BF) frame of reference such that
rotational and translational motions could be des -
cribed as motions of the BF frame and internal motions
could be described with respect to the BF frame.

They centred their discussion on the method that
Eckart(2) had proposed for constructing a BF frame for
"normal molecules".Such molecules would today be called
"semi-rigid"molecules {(SRMs)but to quote Ferigle and
Weber,"a molecule is called normal when there are no
gross internal motions and when in the vibrationless
state, it behaves like a rigid body (zero point energy

not be considered)".They also considered briefly the
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work of Sayvetz (3) in the construction of BF frames for
molecules that did exhibit gross internal motionsg mole-
cules that would today be called "non-rigid"” molecules
(NRMs) .They worked entirely in classical mechanics and
did not consider in any detail how the gquantum mecha -
nical equivalents of the classical hamiltonian equa -
tions of motion were to be constructed.

Since the appearance of their article there have
been many developments in this field and it seemed app-
ropriate now to attempt to offer an account analogous
to theirs but which took cognizance of some,at least ,
of the more recent development,which used rather more
modern notation and which was rather more explicit
about the passage to the guantum mechanical hamiltonian
from the c¢lassical one.

It is hoped that the present account will help as an
introduction to modern theoretical monographs on mole-
cular spectroscopy (such as Bunker 4 and to the more
recent literature.The account does not deal in any de-
tail with nonrigid molecules but it will,it is hoped
serve as an introduction to monographs (such as that

Ezra(5) on this subject too.
1. Classical relations

If a collection of Coulomb-interacting particles
have cartesian coordinates R= {fo} with respect to a
lab-fixed (LF) coordinate system,with the conjugate
momenta {Pfk}’ then the lagrangian and the hamiltonian
form of the total energy of the whole system are

E=4% 1 m iai + V(R), 1.1
£ A A

and 5

H =% L p.,/m, + V(R)}, 1.2
) A7 A

respectively,where V(R) 1s the potential energy of the
entire system and consists of all the Coulomb interac-
tions between all pairs of particles. {In this work the
index A refers to a general particle,and the indices
f,g,h, refer to a general direction of the LF frame
axes.Unit vevtors will be denoted ?f etc.)

Let the transformation egquation to a new set of real
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¢eneralized coordinates g = {qT} be of the type

Rfl =Rfk (q) ’ 1.3
then eq.'1l becomes

—_ 1 . .

E = % EG 954 q, VD), 1.4

"where
= L )
CITO 0, EL/\(BRfA/BqT)(SRF)\/BqO) 1.5

If {pr} are the conjugate momenta to the set {g } (re-
. C
nrembering that p. = B(T--V)BqT where.T is the classical

kinetic eneray of the system)and gT0 is the matrix

reciprocal to gTU’then it is easy to show that

: _ Y
q. = Zg P 1.6
v
and thus that the hamiltonian form of 1.4 1is
TCO
H=%1 g pop + viqg, g
TO Ta
where the explicit form of JG is,by the chain-rule,
T = L m_- . fam .
g £ 5\ (UqT/o fA)(aqU/deA). 1.8
In tensor language the guantities g are the com -

TO
ponents of a symmetric covariant tensor of rank two

called the tranformation metric tensor and the guan -
tities gTC are the components of a symmetric contra -

variant tensor of rank two,the reciprocal tensor of

g
g
2. Translation to quantum mechanics
The rule of correspondence in guantum mechanics va-
1id for cartesian coordinate systems is simple and gi-

ven in all elementary texts,so that the operator forn

of 1.2 is simply the standard form.

Z 2
o= -{(h"/2)r v /m, + V(R), 2.1
roox 7
and the Schroddinger eqguation is
2 2 —
(R /2)7  + VIR Jy.= B 2.2

whcre'v2 =Elvi/mk and wR is the wavefunction in R space.
The operator form of 1.7 is a bit more difficult to
derive , but it is possible to show using tensor algebra
&ee e.g.£6]],that the laplacian V2 in a generalized
coordinate system q is given by

2 -3

1
95 =g 't (3/39.09 ¢ %3/ 54 ), 2.3
TO T g
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where g = Det = D Toy~ 1
1951 (Det gty .
If wq is the wavefuncticn in g-space,then the norma-—

lization condition for the two spaces is

Fovgug Tda = supen [y 9Rey = sudugs T ea
T

-

T
2.4

Therefore,we may define
bp = o /40, 2.5

In some coordinate systems volume element of the
form pggqu is found useful,where the weight factor
P is some function of the c¢oocrdinates g.In this case

we may define

2 3
b= (Qq/g) Uy 2.6

Substituting for v° and Uy from 2.3 ana 2.4 in
2.2 we arrive at the following expression,originally
deraved by podolsky (7) (see also ref.8) for the hamil-
tonian operator corresponding to the classical expres-
sion 1.7 in a generalized coordinate system.

B =(—ﬁ2/2)(O§/g)_l/4g_% z

L (8/3a )g%qTU(a/aq )(02/9‘)l
TO T a q

+ V(qgq). 2.7
3.Classical Molecular Hamiltonian

In order to separate the translational,rotational,
vibrational and electronic variables as completely as
possible,we may transform the LF cartesian coordinates
of the nuclei and electrons in the molecule to a mo -
ving body-fixed (BF; frame(to be specified later)
through the following steps:

(iyshift the origin of the LF frame to the molecular
center-of-mass;keeping the axes parallel,in order to
separate the translational variables.

(1ii)Shifting the origin from the molecular center-of-
mass to the nuclear center-of-mass,keeping the axes
parallel,in order to separate electronic variables
from the nuclear variables.

(111) Without shifting the origin,change to the BF
frame in order to separate the nuclear framework rota-
tional variables from the nuclear framework vibra-—

tional wvariables.
" 6
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If the position of a particle (an electron or a nu-
cleus) 1is BR in the LF frame and El in the BF frame,
then the general transformation equation may be formu-
lated as(fig.1}:

r R - R -4 , 3.1
~)\ —\.A o~ —~

where R is the positicon of the molecular center of

mass with respect to the LF frame:

R =1Im R. /M , 3.2
~ A A ~h
with M = kakthe total mass of the molecule.Here d is a

vector from the molecular center-of-mass to the nuclear
center-of-mass.In this work the indices 1,3 refer to
the nuclei:S,t to the electrons;k,l,m,n,to the vibra -
tional wvariables; and u or v is a general rotational
variable.Cartesian components are written as a, & vy co-
rresponding to x,y,z and unit vectors as gaetc.

Since the origin of the BF frame is at the nuclear

center of mass,

L m.r., =0, 3.3
] 1~3J ~

therefore,
d = -m/ML ©r_, 3.4
-~ ~3

5

where m is the electronic mass.It also follows that
L m {r. + d) = . 3.5
s A A ar =09

If C = e .g is the direction cosine matrix which
gy ~g oy

determines the orientation of the BF frame axes with

respect to the LF frame axes,then 3.1 can be written

as
=R+ I C {r _ +d). 3.6
g g o T oad o
The time derivative of 3.6 can be written as
R = R + I (C (r +a) +C (r + d)). 3.7
gh g R ah v} 9o oA v}
To make a relationship between Cg and the time deri =
o

vative of the rotational variables u,we use a mathe -

matical trick as follows.Since ¢ is an orthogonal mat-
. T . . .

rix,then c A CAu) is a skew-symmetric matrix and can

be written in terms of skew-symmetric matrices

%BY' =(fh)ﬂv as follows
T
(C3C/dn) =L X [(e) or
~ ; TRy o uo ~oBy
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= X C (e J)_ - .49
BCqy /8 T I %0 "u’sy

where the ﬁ} are some coefficients (the form of mat -
rices (ga) and(g—l) are given in Appendix I).

By oru
Therefore

C

= Z{(3C_ /aulu
gy . 9 gy 3
= L e X ¢ _u.
oB u By “ux g8 3.9

It is convenient when considering polyatomic mole -~
cules to construct the direction cosine matrix C as a
function of the rotational variables alone and to in -
troduce 3N-6 generalised variables a9y to describe the
internal motions of the nuclei. With this choice the
time derivatives of the nuclear variable in the BF

frame become.

r i =Ek (9T 3/ 89 ) 9y - 3.10
Clearly such choices are not pessible feor diatomic
molecules (N=2) and such molecules are thus excluded
from further consideration here.

The Lagrangian form of kinetic energy of the system

is from i.1 ,given by,

.2
2T = 7 m R . 3.1
“ gl >

g
Substituting for Rg from 3.7 ,followed by insertion
of 3.9 and 3.10 and using the 3n variables ry¢ to

cescribe the n electrons,gives the matrix expression:

M O 0 0] ¢

¥ ° 0 C s

0 X(I+W)¥ -(Xz) (XY [ &

2T = (Rugr e 0
e -1 =

0 - (X2Z) G O s

e Xz S LY

O - (XY) 0 D 7

0

The matrix in 3.12 is the tensor g expressed in mat-
TT

rix forr and its sub-matrices are defined as follows:

Z =7y m, ¥ e ¥ .3r ./349, - 3049
ui i oAy aBy Ri%9 vi k
- - T . ) B }-- 3.14
Gp =5 ™ F 389 (aral/aqﬁ
ol
I = e e I m,r . xr .. o FN .
aB %65 aye RBée i 1 y1 §1
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-1 o2 s 3.16
DYS,St = (-m /M + m@st v6
¥ = bt e r . 3.17
a bt vys.86t n OQNY YS
Ys
-1
Wyg= & D e r T e ro . 3.18
o .
B ye.ge  YS:Stnoeny Tns o “ges Tee
A little algebra shows that
W = YDYT, 3.19
with
o = -1 ot
“ys.at (m 55t w )Syé i 3.20

where my is total mass of the nuclei.

To bring the kinetic energy expression 3.12 to
hamiltonian form it is necessary (see 1.6 ) to invert
the transformation matrix to obtain the matrix repre -
sentative of g'% .To do this the partioning method which

is described in the Appendix II is used.The result is:

mo1 0 0 o
~ ~ ~ ~ R
- -1 -T -T
R u_q.r.| 0 Ty X~ (26) x Tuyp) P
2r=(p B PR TS R L T T 5
CT T O (2G) WX T G+ (ZG) 'y (ZG) (2G) u(¥D) (g9
~ ~ TN— ~ ~~T ~— ~T =~ ¥
LO (YD) "px (YD) " (Z6) D+ (YD) p(¥D)®
3.21 7

. . R u q r .
in which p ,p ,p ,P are the conjugate momenta corres-

ponding to the generalized velocities R,u,q and © res -

pectively and the matrix U is defined as:

-1 . T
poo o FDo-osGen, 3.22

v 1

and the matrix G is the matrix inverse to g_ in 3.14

~

The total angular momentum for a system of parti -
cles with respect to the origin of the LF frame is de=~

fined by
J_ = 7 z
£ 7 M oh

In order to express 3.24 in terms of the molecular

. R R 2.23
efgh gx h

coordinates,we substitute for Rg% from 3.6 and for
éh from 3.7 which after making use of 3.9 and 3.
10 and 3.13 - 3.18 by straightforward algebra, we
obtain
J.='c| (7 e R R +LC_ (~(I+W) xTy

£ Sy fghigh GTfa I+W) % u %%+£E)d 3.24
whiere the factorx !g| (+1 or-1) arises because angular

momentum is an axial or pseudo-vector.

]
7



s e e e A P o S S | eyl masichun S DGR
Pure Res. Iran.J.Chem.& Chem.Eng. Qct 1987

The firét term in 3.24 is the angular momentum of
the center-of-mass of the molecule with respect to the
origin of the LF frame,and the second term is the total
angular momentum of the molecule akbout the center of
mass.We shall continue to use the notation J for the
components of the angular momentum about the center-of
-mass:

- 3.25

T oT. .
a=lel zc (- {I+¥W) X u+zg+
s 1

£ £r)

fo
If the Jf are projected along the BF frame axes, the
column matrix of components J is then

M

T = -(1+ W) x 4+zd +¥i 3.26
From 1.6 the velocities may be written in terms of
the momenta with the aid of the transformation matrix
in 3.21 and after a little algebra it follows that

3 = -xp". 3.27
Thus the total angular momentum is carried by the mo -
tion of the BF frame and does not involve the q, or
the ras’

At this stage it is possible to write down a formal
expression for the Hamiltonian in either classical form

1.7 or guantum mechanical form 2.3 or 2.7 .5uch an
expression would however be of the little value without

axplicit expression for the molecular variables and it is
suchexpressions that are considered in the next section.

4.Vibrational variables

So far the molecular variables have not been spe -
cified in detail but i1t has been assumed that there
exist 3N-6 vibrational variables,qk,thatcan be written
in terms of the 3N cartesian variables,rmi cf the BF
frame.

q, =9, (r r )

1'52...~V . a.1
This implies that the rai cannot all be independent
variables but that there must be six relations among
them corresponding to the translational and rotaticnal
invariance reguirements.

The three relations that correspond to the require-

ment of translational invariance follow at once from

3.3 .They effectively define the centre mass variable

10
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and are
O = i mirai' &= X, v or Zs Y E e,

The three relations that correspond to the require -
ments of rotational invariance can be written generally
as

fm(zl’£2""£N) F @y m.=1y 253, 4.3
where the faunctional form of the fm can be chosen in
many different ways.From 3.6 it is easily seen that
the three relations 4.3 effectively determine the
elements of the direction cosine matrix 9 as functions
of (Rg —Rg) and hence that they determine the rota -
tionalkvariables,u,of the problem (which are often ta-
ken to be three Euler angles).It 1s not however usu -
ally necessary to obtain explicit expressions for the
rotational variables sinrce,as will be seen,it is po -
ssible to express the hamiltonian in terms involving
only the components of angular momentum whose properties
are well known,and to avoid explicit reference to the
angular variables themselves.Nevertheless the choice
of constraints 4.3 1s a matter cof some delicacy since
it must be made with a view to the explicit inversion
4.1 to give.

Yai rai (ql

ar-«-29 y , 0= X,vy,2
T2 1.2 4.4

IN-6 i=1,2,...,N,
if the hamiltonian is actually to be expressed in terms
cf the qk.The issues involved are probably best ex -
Plained by giving and account of the way in which Eckart(2)
first successfully solved the problem (see also 9,10).
Eckart supposed that for most ordinary molecules it
was possible to find a BF frame in which the nuclei had
egquilibrium positions r? about which their motions
were localized .These positions defined a molecular
framework or geometry about which the actual nuclear

positions could be represented in terms of displace -
o]

ment coordinates.p .=r -y ,5uch that the g, could be
0,1 aj_ 1 k
written as
= I B , ]
qk : kalpal - ; fkigi 4.5

oi 1 ;

where the B . {the components of the vector s .Jwere
k,0i ~k.,1

11
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constants.Eckart then expressed the three rotational
constraints by means of the eguetion

o
o = X m, (r.xr,)
;g b ~isia

r O TX,¥Y,2 4,6
These relations are easily seen to correspond to
the requirement that the nuclei,when at their eguili -
brium positions,have no éngular motion with respect to
the BF frame.'Because the Toi satisfy 4.2 and,by de -
finition, 4.6 it is possible to rewrite equations 4.

2, 4.6 and 4.5 in matrix form as

1
O B
- S = .7
o= |8 |e =% ’
\ g / B
with
1
Bag i 6agli
2 4.8

o
Bugi® v SaByTyi"i’
and the elements of ? as given by 4.5
If the matrix B in 4.7 is non-singular then its
inverse gives the regquired explicit form for the ;al
in terms of the qk alone.
The explicit inversion of'§ is not a trivial matter
but it may be shown that an inverse exists if the 3N-6
TCOWS 6f B are linearly independent and if the elements

of B satisfy the relationesg,

- o = —_—
i Sxi T2 E i * %gy T2 allk, 4.9

where the alternative notation for the elements of B

given in 4.5 has been used.It was first shown by Wil-

1

son that it was possible to find prescriptions for

choosing sets of Ski that satisfy the above reguire -

ments and which yield physically significant internal

coordinates.Rules for choosing such 5 are given at

_ ki
some length in Wilson,Deciuc and Cross {(11).If sucha set

is chosen then it may be shown that

o
|
i~

, LA
€l " ul,qu,
-1 7 - -
A =n 3 (s 87! .

12
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where m is a diagonal matrix of the nuclear masses.

The internal coordinates as defined by 4.5 must
seem to a chemist or physicist somewhat artificial.The
natural internal coordinates in which to describe a
molecule are surely felt to be the bond lengths and
bond angles,or displacements from the equilibrium
values of these quantities.ﬁut if such gquantities had
been used to define a set of internal coordinates then
the relationship between the qy and- the Tui would have
been a non-linear one so that explicit inversion of the
equation would have been at best very difficult and at
worst impossible,while maintaining the conditions 4.6
Cf course in principle it is possible to choose another
set of conditions to replaco 4.6 and which allow for
explicit inversion but in practice this is very diffi-
cult to do except in certain special cases.It is also
the case that the conditions 4.6 lead to a particular-
ly simple and physically appealing form of the hamil -
tonian,as will be seen,so that it is desirable to keep
the form.

-
It should perhaps be noticed at this point that if
the chosen equilibrium geometry is linear thenequatioﬁ
4.6 supplies only one constraint while if the geometry
is planar it supplies only two cohstraints.ln both these
cases,therefore,the definition of constraints fails and
special steps have to be taken to supply the extra cons
trains. It is not necessary to considef these in more
detail here (but see refs.lZ;lB)and it is encugh to say
that what follows in respect of the Eckart hamiltonian
does not apply to linear systems at all but it does
apply to planar systems if it is understood that the
ong (BF) axis is perpendicular to the meolecular plane
and the three (BF) axes constitute a right-handed set.

It is of course possible to express any interal
coordinate (such as a bond-length) as a power series
in the displacement coordinates,or indeed as a power
series in a chosen set of qk.Thus for example a general

interal coordinate ﬂk_may be written as

—13




Pure Res. Iran.J.Chem.& Chem.Enaga. Oct 1987

z B od B3
X o Prwife T L B s
@1 @ if J

aiOBj . 4.11

where the coefficients are the first,second and so on
derivatives of ﬂk with respect to the pai evaluated at
pqi = 0.By taking 4.11 +to any chosen order,explieit
enpressions can be obtzined for the Ay and for the inverse
expression to that order,so that it is possible to use
arbitrary internal coordinates to whatever accuracy 1is
desired and this has been the subject of much recent
interest (14).

In this context the linear internal coordinates de-
fined by Eckart may be regarded as approximations for
small displacements of the nuclei.The Eckart form of
the hamiltonianrn is thus often considered to describe
only vibrational motions of infinitesimal amplitude
but this is not a correct view.Precisely the same phy-
sical occurrences are described by the hamiltonian whe-
ther expressed in terms of the.qk or the ﬂk.Which set
is chosen is a matter for judgement in any particular
preblem.Thus Hov Mills and Strey (15) make out a convin-—
cing argument for choosing a particular set of curvi -
linear coordinates,ﬂk. because they coffer advantages
in the construction of a force-field (see later) that
is transferable from one.isctepic form of a molecule to
another.

Whatever form of coordinates are chosen however it
is easily seen that the Eckart form of the hamiltonian
breaks down i1f the amplitude of the vibration is so
large as‘to make the constraints 4.6 incapable of
satisfaction and hence the direction cosine matrix un-
defined.Thus the hamiltonian of Eckart is not a satis-
factpry hamiltonian for describing large amplitude in-
ternal motions (such as internal rotation)in a molecule
and both the constraint conditions and the definition
of internal coordinates must be modified to construct
a hamiltonian which allows for such motions.Such modi-

fication was first attempted by Sayvetz (3) shortly after
the initial work of Eckart but this work will not be

14
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considered further here.

To return now to the form of the Eckart Hamiltonian
for "normal"mollcules.It is easily seen on using 4.10

to evaluate 3.14 that

9_1 = (B T_l %T)-l 4.12
so that N
-1 T = ¥ -
o = . £ = . 4.13
Gkg (]:?.’ m ,@ }kﬂ, ml ik,l ~g,1

G is thus the familiar Wilson G-matrix,which expre-
sseé a portion of the internal kinetic energy of the

molecule in the bi-linear form 7§ G pqpq.Clearly it

k k
would be advantageous in terms of maiipu%ation to make
this bilinear form diagonal and this is indeed possibkle
for it is seen from 4.9 +that a linear combination
(over 1) of the Ski that satisfy 4.9 also satisfies
4.9 .It is,therefore,possible to define a new set of

internal coorrinates Qk (which may be thought of as a

linear combination of the qk).

_ 3
O = T MidgikPair 4.14
ol
such that
) : . = -
i ToixTlaig Gkg 4.15
With this choice it is seen that the elements of
e . .
m.1 |, define the Q. in the same way that the elements
i aik k
Bkai define the 9, and so on making the appropriate

correspondences in 4.13 it follows that G becomes a

{(3N-6) by (3¥-6) unit matrix and from 4.10 that

p., = m, E ]aika‘ 4,186

4 particular case of the orthogonal c¢oordinates intro-

duced above are the normal c¢oordinates for the problem.

These coordinates are appropriate when the potential
energy of the molecule ‘can be well represented by the

power series expansion about the equilibrium geometry.

(2)

Y = V{0) + L. v L . . .
o) D% Gilpy VaiBPuifpj 4.7

The constant term in 4.17 may be treated as the origin
of vibrational energy and the linear term in the expan-

sion is absent becagse the first derivatives of V eval-

15
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vated at the equilibrium geometry wvanish.Substituting
4.16 into 4.17 yields
v(Q) = VvI(0) . b ngg, 4.18
where g is a column matrix of the Qk and

-k -k v (2

ket T ™ MiTaikVadss Tgye

kg .o
alpg]
F is clearly a constant symmetric matrix that can be

diagonalized by means of an orthogonal transformation

U such that

T T .
UTEU =f, UU= By 4.20
where f is a diagonal matrix.Introducing the cocudi
]
nates
= T
Q =109, 4.21

énables (4.18) to be written in the forr
V(D)= vi0)+ % 0 £D. 4.22
Substituting 4.14 inte 4.2]1 gives an expression

for the ék in terms of the pai with the coefficients
playing the part of the.Bkai for the new coordinates.
If the resulting g-matrix ig used in 4.13 it is easi-~
ly seen that g remains a unit matrix.Thus is the new
cocrdinates ék that diagonalize both F and G are the
required normal coordinates.

In practice it is uswal to cbtain expressions for

)

and for F in terms of the non-orthogonal coordinates 9y
and then to construct directly a transfermation that
diagonalizes both G and F in this basis,hence obtain -
ing the normal coordinates in +erms of the %y and thus
in terms of the Pu i using 4.5 This is the celebrated
Wilson FG matrix method described in detail in the text

of Wilsecn,Decius and Cross (11}.

The matrix_g is often called the force constant mat-

rix and is said to represent the molecular force-field
in the guadratic or harmdnic approximation.The term

harmonic approximation is used because,as will be seen,
in first approximation the vibrational part of the Ec-
kart hamiltonian,when expressed in normal coordinates,

simply becomes a sum of harmonic-oscillator like hamil—

16
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tonians.

5.The complete classical hamilteonian in the Eckart foxr-

mulation
If it is supposed that a set of orthogonal internal
soordinates (perhaps normal coordinates) has been found
for a problem so that the]Gik in 4.12 and 4.15 are

actually known,it is ncw easy to show 3,13 Dbecomes

g
“ak T g a9 ¢ 5.1
with
o .
Eyx™ E (1, ~i) gl 5.2

o . .
where the constants EQ are usually called the Coriolis

coupling constants.Usiig this form 5.1 in 3:.22 it
follows after some algebra that

(B g “Tag - fom i Eini2y °3
where IdB is an element of the usual instantaneous iner
tia tensor as defined by 3.15 ,expressed in terms of
the Qk.It is possible to show after some further algeb-
ra {(see eg.ref.9) that U may be written explicitly as

po= (1)~ 1%@m Tt 5.4

o . .
where I  is the equilibrium geometry inertia tensor and

where
w _ 10 aB 5.5
IaB = IaB + % i ak Qk'
with
af L 0
= R . L 5.6
ay 2 YEE euys eBde i merl §ik

Remembering that Q is given by 3.20 and that G is a

unit matrix,we now have explicit expressions for all
the sub-matrices in the transformation matrix '3.21 ’
with the exception of the matrix E.This last matrix,as
is seen from its definition 3.8 ,depends only on the
angular variables and from 3.27 it is seenvsimply to
define the angular momentum of the problem.Thus if the
hamiltonian is expressed in terms of the problem.Thus
if the hgmiltonian is expressed in terms of the angular

momentum components,whose properties are anyway known,

17
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explicit reference to the angular variables in the
hamilteonian may ke Avoidegd.

In order to express the hamiltonian now derivable
from 1.7 , 3.21 and the above explicit forms it is’

convenient to define the wvariables.

G = T & o0.p2, 5.7
o )
and
L = I e r pr . 5.8
sy ONY nsTYs

The hamiltonian now follows on making the appropriate

substitutions and is (ignoring the center-of-mass

term) :
g =% T B ~ e o0 2
k
-1 -1 r r
z (m +
as, ot 651: mN )6018 P_O'.SPBt + V (r,0Q) 5.9

and the determinant g, {see 2.3 is just (ignoring

constant factors)

2, -1 5.10
VR Tul

&.The guantum mechanical hamiltonian in the Eckart

formulation

. Although,in principle,it is a straightforward matter
to use 2.7 to form the guantum mechanical hamiltonian
the actua algebra involved is,in fact,extremely compli-
cated.It was shown by ref.g that the most compact form
and the form most like the classical form 5.9 could
be obtained by choosing pq 2.6 to be |§ |and intre -

ducing operators analagous to 5.8 and 5.9

c = hysi o @, -
G, /inoeR0, e/en, 6.1
4 = n i E r r 6.2
LOL /l eO'.T']Y ns 3/3 YS

sNY

and by observing that both these operators commute

with UQB for any choice of §.
With these choices the guantum mechanical form of
5.9 is
H=1% 5 (54 Gy "L J, -6, L -h7/2 3 az/agi

u
af af o o o & B K
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p 2 2 ~
- h/2m Tov - h*/2mg Sgt Ve ® Ve * Uu(Q) + v(r,Q)
] r

where

~ 2 -
uQy = -h /8 1 Hon
o
The term U{Q) (often called the Watson term)arises from
the reduction of the kinetic energy expression although
its form is that of an addition to the potential energv.
From 2.4 it is easily seen that the correct form

of the normalization integral for solutions W (r,Q,u) of

6.3 is just

2
S e, 0. T dxinaw) (par, ) mag,) 6.5
~ 0~ ~ as k
. u as k
In fact the integral over the angular variables in &S5

can always be done explicitly.This is because the eigen-
functions, Jk> of the gquantum mechanicial angular mo -
mentum operator ,form a complete sct so that the ge -

neral solution must be writable as
+J
V(r,0,u) = IOy (2. Q) ok >, 6.6

foskst Lok X du =
>0 laks (x| 1 u S1vg S 6.7

In fact rome care must be taken with the angular mo-
mentum operstors in 6.3 for it can be shown by choo -
sing an explicit set of angular variables and constru-
cting E in terms of them,that the components,Ja' of the
gquantum mechanical operator defined by putting 3.27
in operator form,do not obey the standard commutation

relations but rather the anomalous ones.
(0 3] =-ih T e , 3 . 6.8
o B
-Y . .
which differ in the sign of the right hand side from the
standard ones.Thig difficulty can easily be c¢ircumven-

o
obey the standard commutation relations and in terms of

ted however by defining the operators K _ =-J  which do
o

the operators the first term in 6.3 becomes:

X I oy (K + G +L )(ﬁ
0B al o o a R

~

+GB +LB ). 5.9
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~

However it 1is the form involving the Ja operators which
is the usual one in the literature.

In attempting solution of the guantyum mechanical
problem specified by the hamiltonian 6.3 it is wusual
to make the Born-Oppenheimer approximation and to
assume that the total wavefunction for the problem may
be writ%en as product of an electronic and a nuclear
motion part.Calculating the expectation value of the
hamilteonian with respect to the electronic motioens only
and neglecting certain térms,leads to a hamiltonian for

nuclear motion of the form

H=1 & Uoa (T -G )y(5, - G, )
ap 2B o B B
2 ) 2 2 "~ -~
-h /2 L g /an + U(D)Y + E(Q), 6.10
, ? .

where ﬁ(Q) is the potential formed by integrating out

the electronic variables.It is easily seen that this
pofential is,to a first approximation,the sum of the
electronic energy and the nuclear repulsion energy at
any set of nuclear positicns and for the Eckart axis
choice to be useful it must have a deep minimum at Q=Q.

7. Expansion of the tensor Y and the vibraticnal poten-

tial energy

1f the vibrational amplitudes are small compared to
the inter-nuclear distances,expansion of the tensor u
and of the vibrational potential energy V as a Tavlorx
series in the normal coordinates usually converges ra-
pidly justifying the use of higher order tefms in hamil-
tonian expansion as perturbations.

The Taylor expansion of the tensor H can be written
as

2
[a]
no=u 4 L (BY/80,0Q, t+ % Loo9TH /39 aQI)Qle

X k] 7.1

o o, -1 . . .
where u =(I) is the inverse of the moment of inertia

~

matrix for the nuclear framework in its eqguilibrium
configuration.Using 5.4 , 5.5 and the rule for differen

]
tiation of an inverse matrix

- - -1
asat a"ley = -aTl(e)dazar aat, 7.2

20
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we can easily obtain:
o o o o o o
u =g - L (p oa p)Q +3/4 3§ (poa g oayu)Q Qi+ -
H Sl g 18 z A RO
7.3

If the equilibrium configuration is referred to the

o o
] i - i t ,that i I =1 ,th 7.3
pPrincipal—-axis system a is 0B @G6a8 eq
can be written as
) o _oB
HoB _MG,O‘.G(_XB B ])i (UO'.O‘.ak UBB )Qk
e} ad < §g o 7.4
+ 3/4 b (Uor.a ak U(S(Sa] UBB)QkQ]-
k](S
Defining the dimensionless normal coordinates qi by
2 1/4
= f '.
Q= /£ dy 7.5
where fk =(2'chk )2,and mk(in cms_l)is the normal fre-

querncy associated with Qk and the rotational c¢onstants

B

. o . -1
B B
a and X (both in cm tas
o

2
Ba = “U,CJ (ﬁ /2hC)r

2 ,
BXP= (n7/2he) (B p/8q))

- _ (%3 3/2y.,©  _aB ,© %
= [ﬁ /2 (he) ]“aa al UBBwk , 7.6
then we may write 7.3 as
_ aff -1 _ad 68 Ve
3 Uog = Baﬁaﬂ + £ B Uay * 3/4 ¢ (B5 Bl B] )qqu -
k k16
7.7

The expansion of the vibrational potential energy in

terms of dimensionless normal coordinates qﬁiswritten

as
2
(V/he) = % I w.,q'” +1/6 T ¢ qr4q’qa’
k
K K7k K] m kKl m 17 "m
1 1 1 1 P 7.8
+1/24 2 ¢k1mnqkq]qmqn *
: k] mn
where ¢k]m and ¢k]mn are the cubic and quartic poten-

tial constants.

Introcducing 7.5 and 7.7 intoe 6.10 and making use
of the notation ﬁnm where the first subscript is the
degree in the wvibrational operators (coordinates and
momenta)and the second subscript is the degree in the

1

components of the total angular momentum cperatgr Ju

21
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then we obtain

H = E Hnm 7.9
mn
with
~ "2 A -1 a8 R . A AN A
BE .= L B J |, H, =3/4 © 1t (B, B "B )lq'aq'd Jd
02 4 oo 22 aB6 K § "k 71 kK1 a B
H = Z B t = 2
127 5,5k quaJB JH, ==2 (zl B.CyTy ’ 7.10

and so on for the rotational part.
For the vibrational part of the vibration-rotation

hamiltonian using P, to denote ﬁ/ia/aqi, we obtain

k

~ b 2 ~2
H20 = 1/2 I (‘hfk 1i{p + g'")
. K 133 R
/I:I ] ] )
30 = (hc/6) kﬁm ?kpmk Ty I,
H4O= the/24) 3 ¢k]mnqkq]qmqn ’ 7.11
k1 mn .
and so On'Hoj is the rigid rotator operator,H12 and
ﬁ22 are the centrifugal distortion operators,ﬁ20 is

the harmonic oscillator operator,H3O

the anharmonicity of molecular vibrations.

and g describe
40

Thus to a first approximation the hamiltonian in the

Eckart choice of the BF frame is just the sum of HO2

and H20,the assymetric rigid rotor and harmonic oscil-

lator hamiltonians.It follows then that in this approxi-

mation its solutions are of the form

+J
' Jk>
d{g") L Ck k 7.12
- k=-J
where ® (gq') is simply a product of harmonic oscillator

eigenfunctions one for each oscillator defined by a
normal coordinate.The total energy is therefore a sum
of a rotational energy and a vibrational energy.The

vibrational energy is of the form

3IN-6
E, = I €, r e, (0 %) few, »n, = 0,1,2,... 7.13

k=1
and the precise form of the rotational energy depends
on the equilibrium geometry of the nuclear framework
and hence the relationship between the rotational cons-
tants.If two of the rotational constants are egual for
22
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example and egual to B then the molecule is a symmetric

top and the form of the rotational enexrgy is

Ek = h(BJ{J+1) - (C—B)k2), 7.14
where C is the unique rotaticnal constant.The expres -
sion for the asymﬁetric top is somewhat more compli -
cated than this and will not be considered here, for
sufficient has been done,it is hoped,to enable contact
to be made with the treatment of vibration-rotation
given in elementary spectroscopic texts and for entry
to be affected to the more extensive research on this
subject.
Appendix I:The matrices (EG)BY and (5_1)

The definition of the permutation symbol or unit

antisymmetric tensor e

By
CaBy = +1; a,.8.,y %n cyclic order,
= 1; arBory not in cyclic order,
= ¢o; twe indices alike (Al)

implies that

o 0 0
e = 0 0 1
~ X

Q -1 Q

0] 0] -1
e = (@] o] 0]
~ Y

1 0] 0

Q 1 Q
E£,.= -1 o 0 (a2)

Q Q Q

These matrices are also introduced in ref.l4.

Taking the eulerian angles g, ¢,x as the rotational
variables and using the convention of Wilson et al, (9)
for these angles, then from 3.8 and the above matri-

ces,it is straightforward to show that

siny ~CSCHCOSY cotB@cosy
-1
X == cos csc@gsinX -—cotpsiny
0 0 1

23
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Appendix II:

Inverse by partitioning:

let the matrix & = (aij) of order m and its inverse
B =(bij) be partitioned into submatrices of indicated
crder: \
A B B
B1a 212 \ By Bl
(pxp) {pxy) | (pxp) (pxy) \
- - - - - - - and - - - - - - - -
B
2o Bao Bo1 Z22
{yxp) (yxy) {yxp) o fyxy)
where p + y = n.Since AB = BA = E , we have
o= 4 ~h
-1 -1, -1 -1 -1
B = H B =
~11 ~ ~22 D +§22521§ 512522
- -1 -1 -1
= - =- H
~12 ~ B1,0,, Bo1778,52,
a1 -1
Bog T7R,05 0
where
= - A
i 5ll 512922~21
also,since
L A E O H
~11 ~12 ~p ~ ~ S12
A -1
£ _ a _
21 522 522~21 Eq o 522
then,
det{a| = det |522,.det |§! . A4
~ P
A
a/ )
Y, BF FRAME (€,)
/G
4y
7
/4
Vs
LF FRAME {ef)
0 BF PR I
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