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ABSTRACT: In the present research, neural networks were applied to predict mass transfer flux  

of CO2 in aqueous amine solutions. Buckingham π theorem was used to determine the effective 

dimensionless parameters on CO2 mass transfer flux in reactive separation processes.  

The dimensionless parameters including CO2 loading, the ratio of CO2 diffusion coefficient of gas to a 

liquid, the ratio of the CO2 partial pressure to the total pressure, the ratio of film thickness of gas to liquid  

and film parameter as input variables and mass transfer flux of CO2 as output variables were  

in the modeling. A multilayer perceptron network was used in the prediction of CO2 mass transfer flux. 

As a case study, experimental data of CO2 absorption into Piperazine solutions were used in the 

learning, testing, and evaluating steps of the multilayer perceptron.  The optimal structure of the 

multilayer perceptron contains 21 and 17 neurons in two hidden layers. The predicting results of the 

network indicated that the mean square error for mass transfer flux was 4.48%. In addition, the results  

of the multilayer perceptron were compared with the predictions of other researchers’ results.  

The findings revealed that the artificial neural network computes the mass transfer flux of CO2  

more accurately and more quickly. 
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INTRODUCTION 

CO2 is one of the most important greenhouse gases 

which are mainly produced by chemical material and 

industrial units. Due to environmental issues, CO2 which 

is released from chemical material should be reduced and 

controlled. A variety of technologies for CO2 eliminating 

are developed and proposed. These methods are 

considered highly practical and efficient in their function 

by using absorption process with chemical reactions [1]. 

The technological process of getting rid of CO2 based on 

amine solution is considered as the most effective and 

frequently used economic method of diminishing CO2.  

 

 

 

CO2 absorption in amine solutions forms carbamate or 

bicarbonate. Absorption rate depends on physical and 

chemical characteristics of amine solutions and the 

operational conditions of the process including 

temperature and partial pressure of CO2, amine 

concentration. In the recent years, the researchers have 

suggested a variety of amines to eliminate CO2. 

Norouzbahari et al. [2], Hartono et al. [3], Paul et al. [4], 

Sema et al. [5], Naami et al. [6], Porcheron et al. [7]  

have proposed amines with different capabilities.  

One of the solvents which have been recently recognized is  
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Table 1: Reaction rate constant of some amines with CO2 [8]. 

(lit/mol.s)Reaction rate constant Amine type 

4 MDEA 

100 DIPA 

1300 DEA 

4500 DGA 

7100 MMEA 

6000 MEA 

59000 Pz 

 
Piperazine (Pz) solution. This primary amine which has 

annular structure and because of its chemical structure 

has a very high reaction rate and this feature has attracted 

many interests and attentions. Due to the high reaction 

rate of Pz, this solvent is recently used as a promoter  

for solvents having lower rate. In Table 1, reaction rate 

constant of some common amines with CO2 is presented.   

Table 1 indicates that the reaction rate constant of Pz 

compared to MDEA, which is highly common, is much 

greater. Moreover, the volatility of this solvent in the 

temperature of 40 oC is between 10-19 ppm and  

its thermal decomposition is negligible up to 150oC [9]. 

However, the most important issue in CO2 absorption  

is computing the mass transfer flux. In the absorption 

processes, the absorption operation is performed  

in the form of either physical absorption or absorption with 

chemical reaction. To compute the mass transfer flux  

in chemical absorption, the effect of chemical reaction  

on the mass transfer is performed by enhancement factor. 

The enhancement factor is ratio of mass transfer flux 

from interface in a reaction condition to the condition 

without any reaction and the hydrodynamic and driving 

force in both conditions are similar. In other words, 

enhancement factor considers the effect of chemical 

reactions of carbon dioxide mass transfer [10]. 

Enhancement factor is based on reaction rate and  

it can be proposed to be different, larger or equal to one. 

The most important discussion in this regard is finding 

the precise relation of the enhancement factor. Since this 

factor follows other parameters, it is evident that as the 

complexity of the reaction and process increases 

proposing a relation for the enhancement factor can be 

more complex and difficult as well. A variety of relations 

for calculating enhancement factor are proposed and each 

of them is only relevant to a specific issue and none of 

them is precise enough. Researchers such as  

Van Krevelens [11-12], Decoursey [13-14-15], Shen [16], 

Stichlmair [17] and Mamun [18] have proposed different 

relations for enhancement factor based on the film model 

as follow: 

 C O ,i C OO l bC ,
N CE k C

2 22

  

The summarized enhancement factors are presented  

in Table 2. These relations are for specific situations and 

in order to reach to the available factors, different 

simplifications in boundary conditions are conducted and 

this causes error in computing mass transfer flux. A more 

important issue is that in using enhancement factor only 

one main reaction is considered and the effect of other 

reactions is ignored. For example, in the reaction of CO2 

in amines, reactions of CO2 with water and hydroxide ion 

are not taken into consideration. There are different 

reactions in the absorption system of CO2 with Piperazine 

solution which increases mass transfer of CO2 and  

if enhancement factor in computing mass transfer flux  

is used, a huge error will occur. Therefore, in this research, 

in order to apply effect of all reactions, film parameter 

has been employed.  

In some cases, some correlations were presented 

based on mass transfer parameters for computing mass 

transfer flux. Table 3 shows mass transfer correlations  

for reactive separation processes. These correlations  

are limited to operation conditions that used to determine 

the correlation constant. Therefore they cannot applicable 

for wide range of operating conditions.  

By presenting the disadvantages of enhancement 

factor method and correlations, the use of a more 

practical and precise method seems indispensable and  

it is due to the fact that by accurately computing mass 

transfer flux, dimensions of absorption column  

can be computed precisely. 

The development of numerical tools, such as 

Artificial Neural Network (ANN), has paved the way  

for alternative methods to predict the chemical processes 

parameters especially thermodynamic, mass transfer and 

hydrodynamic parameters [28-31]. Yehia and Elshazly 

used neural networks to estimate mass transfer coefficient 

from the bottom of agitated vessel [28]. Adnan et al. 

applied artificial neural network in the calculation of  

the thermodynamic properties of an alternative refrigerant [32]. 

Jouyban et al. investigated the solubility prediction 
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Table 2: Enhancement factors for chemical absorption processes. 

Enhancement factor Reaction References 

A , b

A

A ,i

CH a
E ( )

tan h ( H a ) C co sh ( H a )
 

1
1  First order and pseudo first order 

AP 
[19] 

B , bB

A

A A ,i

CDa
E

b D C

 
  
 
 

1  Irreversible second order 

aA+bBP 
[20] 

A , b

A

A ,i

CH a
E ( )

tan h ( H a ) C co sh ( H a )
 

1
1  Irreversible second order 

AAP 
[21] 

 A

A

L

D k K KK
E ,

K ta n h k


  






1
11

1

 Reversible first order 

k

k
A E



1

1

 
[22] 

B , bB

A

B EA
A ,i

CD
E

D DD
C

K

 
   

  

1  
Reversible first order 

k

k
A E




1

2  
[22] 

A , b E A

A

A ,i E A

A , b A ,i E , bE A

E A A ,i

E A

E A

C D / DP
E

C m / T

C / C CD / D P

/ m T C c o sh M

D / DP ta n h M

m / T M

   
            

   
          




  

1
1 1

1

1 1
1

1

1
1

1

 
Reversible second order 

k

k
A B E F



  1

1

 
[23] 

B ,i

B , b B , bB

A

A , bA A ,i

A ,i

C

C CD
E

Cn D C

C

 



1
1

1

 
Reversible second order 

k

k
A B E



 1

1

 
[24] 

 

Table 3: Mass transfer correlations. 

. . *

C O L e
N K C R M ([C O ] [C O ] )


   

0 0087 0 894

2 2 2
 [25] 

 
.

.

C O L C O ,i i b
N . K ( H a ) ([C O ] [C O ] )      

2

0 17
0 0 90

2 2 2
1 37  [26] 

 

. . .

C O .g g* .

C O L b

t L L

P D
N K (C O C O )( ) . M

P D




     

              

2

2

0 8622 0 7206 3 2883

0 68641 2407

2 2
 [27] 

 

of anthracene in binary and ternary solvents using 

artificial neural networks [33]. 

ANN offers nonlinear mapping capability that  

can be applied for storage and recollection of mass 

transfer data [28]. The associative property of artificial 

neural networks and their inherent ability to learn and 

recognize highly non-linear finds them ideally suited  

to a wide range of applications in the chemical engineering 

processes. Many different types of neural networks have been 

developed [33-35]. The MultiLayer Perceptron (MLP) 

and radial basis function (RBF) are the most  

popular networks in the chemical engineering 

applications. They have been widely used for estimation 

of chemical processes variables. They are both non-linear 

feed-forward networks and universal approximators. 

MLPs are usually trained with the back-propagation 

supervised algorithm, whereas RBF networks are usually 

trained one layer at a time with the first layer 

unsupervised [33-35]. 

Accordingly, in the current research, neural networks 

were used for precisely computing the mass transfer flux 

of CO2. In this work, both liquid and gas phases mass 
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transfer variables were used in the neural network models.  

Based on the fast development and the widespread 

success of applying artificial neural networks in different 

aspects of science and engineering, a model based on 

ANN can be an appropriate substitution for overcoming 

the constraints and complexities of a process. In addition, 

some attention has been directed towards its capability  

in solving linear and non-linear problems [28].  

 

THEORITICAL SECTION 

Mass transfer flux variables  

In computing mass transfer flux of CO2 in amine 

solutions, the following variables are included in  

the process: partial pressure, total pressure, diffusion 

coefficient of components in phases, concentration  

of components in solution, rates of chemical reactions  

in solution and mass transfer coefficient.  

 C O L G L G L C O t C O A M
N f k , k , D , D , , , P , P , C , C  

2 2 2

 (1) 

Dimensionless variables in absorption process  

are derived using the Buckingham theorem based  

on the following formula [27]:   

*

C O

C O C O g g

l l, bl C O

N P D
f ( , , , M , )

P DC Ck ( )


 



2

2 2

2         (2) 

These variables, which are dimensionless numbers  

in the process, are effective in computing mass transfer flux. 

Since in the above formula NCO2 should be computed,  

the input variables of the neural networks are presented  

in Table 4. 

 

Case study: CO2 absorption into piperazine solution 

Where,  denotes the CO2 loading in the solution 

which expressed as total moles of CO2 absorbed both 

chemically and physically per mole of amine. It's defined 

as follows [36].  

C O

p z

C

C
 

2                                                                        (3) 

This parameter is indicative of the effect of the 

concentration of components and if this parameter is 

lower, mass transfer driving force is higher and therefore 

the extent of absorption becomes higher; and in larger 

amounts, the amount of absorption decreases. The overall 

Pz solution and CO2 concentration balance are as follow:  

P Z P Z P Z C O OP Z H P Z H
C m m m m     2

2

                   (4) 

P Z H ( C O O ) P Z H C O O
m m  

2

 

C O C O H C O C O P Z C O O
C m m m m      2

2 2 3 3

               (5) 

P Z H ( C O O ) P Z H C O O
m m  

2

2  

For computing the concentration of ionic and 

molecular components, all the required equations  

must be considered. These equations include: charge balance 

equation, reaction constant equations and balance equations 

for amine and CO2. These two equations are necessary 

for computing the concentrations of components  

after reaction. In addition to the equilibrium equations, overall 

Pz and CO2 concentrations as well as charge balance 

must be satisfied. Charge balance equation is as follows: 

H P z H P z H O H H C O
m m m m m        2

2 3

2                  (6) 

C O P z C O O P z (C O O )
m m m   2

3 2

2 2  

Solving this set of independent equations for a given 

temperature, Pz overall concentration, and CO2 loading 

results in the true (equilibrium) composition of the liquid 

phase, expressed as the molality of each species (mol/kg), 

needed for solving the VLE equations. 

In this work, activity coefficients of both molecular 

and ionic species were calculated using the modified 

Pitzer's thermodynamic model for the excess Gibbs energy 

of aqueous electrolyte solutions. This form is as follows: 

E

i j i j

w w i w j w

G
f (I) m m (I)

R T n M
 

    1
                        (7) 

i j k ijk

i w j w k w

m m m

  

    

Where f1(I) is modified Debye-Huckel term and Mw  

is molar mass of water. 

The parameters of pitzer equation include: βij: binary 

interaction parameter between species i and j, λij: second 

virial coefficient, τijk: ternary interaction parameter. 

M is considered as the Film parameter and is used  

for considering the effect of chemical reactions  

in mass transfer [37]. 

l i ,C O

i

*

l

D r

M

k [C O ]








2

4

2 1

2

2

                                                       (8) 
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Table 4: Dimensionless parameters obtained from Buckingham π theorem. 

Dimensionless number Concept and definition Number 

 

C O

*

L C O C O , b

N
E

k C C





2

2 2

  Enhancement factor: the ratio of the absorption rate of a gas into a reacting liquid to that if 

there was no reaction 
1 

L L

L

k
S h

D




  
Sherwood: indicative of the ratio of convection mass transfer to diffusion mass transfer 2 

n

l i ,C O

i

*

l

D r

M

k [C O ]








2

2 1

2

2

  
Film conversion parameter: indicative of the ratio of maximum possible conversion in the 

film to maximum diffusional transport through the film 
3 

C O

A M

C

C
 

2   CO2 loading: indicative of the ratio of moles CO2 absorbed to moles amine circulating in 

process 
4 

G

L





  Films thickness ratio: Ratio of gas film thickness to liquid film thickness 5 

C O

t

P

P

2   CO2 mole fraction: Ratio of CO2 partial pressure to the total pressure 6 

G

L

D

D

  Diffusion coefficients ratio: Ratio of diffusion coefficient in gas phase to liquid phase 7 

 

The film parameter is used for applying the effect  

of chemical reactions in mass transfer. The film parameter  

is indicator of mass transfer regime. The magnitude of this 

number is the determiner of location of reaction and type 

of mass transfer device. As this number becomes larger, 

the location of conducting reaction moves towards  

the interface. Therefore, the reaction tents to be 

instantaneous. On the other hand, as this amount 

decreases, the location of conducting reaction moves 

towards the liquid bulk. 

The reactions of Pz with CO2 including: hydrolyze of 

mono-carbamate Piperazine [36]. 

k
C O P Z H O P Z C O O H O

 
   1

2 2 3
                   (9) 

Hydrolyze of dicarbamate Piperazine 

k
C O P Z C O O H O P Z (C O O ) H O

  
   2

2 2 2 3
 (10) 

Formation of bicarbonate:  

k
C O O H H C O

 
 3

2 3
                                         (11) 

The reaction of water with CO2: 

k
C O H O H C O H

 
  4

2 2 3                                  (12) 

A wetted wall column contactor has been used  

to measure the experimental data [1]. The modeled 

threshold of operating conditions of absorption process 

which simulated is presented in Table 5. 

Geometric design of the neural network 

The basic and essential structure of a multi-layered 

(input, hidden and output layers) neural network is made 

up of neuron unit, which each one without having  

a connection with existing neurons in similar layers,  

is completely connected with neurons in neighboring layers. 

The neural network is modeled based on the human’s 

neural system and, in fact, is an imitation of human’s 

brain and neural network. In this network, the attempt  

is for creating a structure which similar to human brain 

has learning, generalization and decision-making power. 

In such structures the goal is introducing the operations  

of a dynamic system which is possible to train the model, 

store the way of system operates in the model and use  

it in cases where it has not been used previously. Because 

of the capability of such networks in modeling the highly 

complex processes in which the number of influential 

factors is highly abundant, its use in engineering 

applications is flourishing.  The most important part  

of a neural network is neuron. The neurons are the 

constituting cells of human’s neural system. Each neural 

network consists of input, hidden and output layers and  

in each layer there are one or more neurons. Each neurons 

of the input layer are multiplied in a weight whose 

amount determines the effect of each variable  

on the performance of each initial layer. Each neuron 

consists of two parts. In the first part, the sum of weight 

of initial material is computed. This mathematical function 
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Table 5: The operating conditions of CO2 absorption in aqueous Pz [1]. 

Temperature (°C) Pressure (psig) CO2 Partial pressure (pa) Loading (mol CO2/mol amine( Pz concentration (molality) 

40 - 100 20 - 70 18 - 66330 0.226 - 0.412 2, 5, 8, 12 

 

is called transfer function whose performance is similar 

to a nonlinear filter and causes the output of neuron  

to be determined in a specific numerical range. The most 

important issue in the neural network models is the 

selection of appropriate input to the model in order  

to reach to an intended output. In addition, the structure 

of neural networks and the way of selecting relationship 

among neurons and the weight each neuron dedicate  

to itself are highly important. The structure of a neural 

network is consisted of number of layers, number  

of neurons in each layer, the way layers are connected  

to each other, training method of the network and the way 

parameters are distributed [38].  

In the present work, in order to expand the ANN 

model for the purpose of mass transfer flux prediction  

(as output variable) (NA), the effective parameters  

in the absorption process are selected as the input variables. 

Since the chemical absorption of CO2 is exothermic 

process, the temperature increases in one column with  

the rise of reaction. Generally, the temperature directly 

affects the mass transfer and the efficiency of absorption 

process. In the current work, the temperature is not 

included in the neural network model. However,  

the effects of temperature on the efficiency of mass transfer 

on the basis of loading terms of amines, diffusion 

coefficient and film parameter are taken into 

consideration. These parameters change as temperature 

changes. 

 Four different training algorithms have been used  

to train and test the ANN including Error Back 

Propagation (EBP) with momentum, Scaled Conjugate 

Gradient (SCG), Levenberg-Marquardt (LM) and 

Bayesian Regulation back propagation (BR).In this work, 

LM approach is used in the training of the multilayer 

perceptron network. Fig. 1 shows that three-layered 

network was used to CO2 mass transfer flux prediction. 

(Input layer, hidden layer and output layer). For statistical 

modeling, only one hidden layer is often satisfactory [39]. 

Therefore the performance of the model with a system 

with one hidden layer is studied, by varying the number 

of neurons. In order to ensure the homogeneity of the 

distribution of the input and output data, all data  

are normalized from 0-1. This method is one of the most 

conventional ways of pre-processing data especially  

in cases where variables have different orders  

of magnitude.  

The tansing transfer function, which is continuous, 

derivational and increasingly homogeneous, is considered 

as the function between input-hidden layers and transfer 

function between hidden-output layers is Purelin 

function. In this research, among the total data (104),  

70 data are randomly chosen for training the network  

and 34 data are used to test the performance of the trained 

network. The optimal structure of the network contains 

21 and 17 neurons in input and hidden layers, 

respectively (with trial and error) and one neuron in outer 

layer corresponding to the single dependent variable with 

500 epochs.  

Transfer functions calculate a layer's output from  

its net input. Multiple layers of neurons with nonlinear 

transfer functions allow the network to learn nonlinear 

relationships between input and output vectors. The linear 

output layer (purelin) is most often used for function 

fitting (or nonlinear regression) problems. Sigmoid 

output neurons (logsig, tansig) are often used for pattern 

recognition problems (in which a decision is being made 

by the network). Therefore, in this problem purelin  

has been selected as transfer function of output layer.  

In the following, the equations of common functions  

in multi-layer networks are presented [40]. 

 p u re li  a n n  n                                                      (13) 

    a   ta n s ig n   / e x p * n    2 1 2 1                  (14) 

    a lo g s ig n    /    e x p n   1 1                         (15) 

Mean square error (MSE) or mean absolute error 

(MAE) was used to obtain number of neurons in hidden 

layers in optimal network. 

N

k

M A E ( t ( k ) a ( k ))
N



 
1

1
                                         (16) 
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Fig. 1: Structure of the artificial neural network used for estimation of mass transfer flux: Connections between nodes  

are shown by solid lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: ANN predictions versus experimental data of mass transfer flux: (a) for training set; (b) for testing set. 

 

N N

k k

M S E e ( k ) ( t ( k ) a ( k ))
N N

 

   
2 2

1 1

1 1
                   (17) 

Three criteria of time, mean square error and number 

of epochs were presented to stop neural networks. Mean 

square error is used to stop the network.  

 

RESULTS AND DISCUSSION 

Although ANN algorithm is a suitable tool to predict 

arbitrary variable in complex processes but it is essential 

to be well trained network, otherwise it is far away  

to have good estimation. Thus proper training is a 

prerequisite in network performance. Fig. 2 illustrates 

how the network has been trained and tested. As it is 

evident, the experimental values are in good agreement 

with the theoretical values, so a well-trained and well-

tested network has been achieved. 

As was previously mentioned, the modified Pitzer 

model is used to obtain the interfacial and liquid bulk 

concentration of molecular and ionic species. In Fig. 3, 

the changes in the amount of free Piperazine 

concentration in relation to the CO2 loading are depicted. 

This figure shows that in a fixed concentration  

of the solution, as the loading extent decreases, the free Pz 

in the solution increases. This is due to the fact that  

as the loading in fixed concentration increases, the amount  

of absorbed CO2 increases and this means that the mass 

transfer flux has increased. It is obvious that as extent 
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Fig. 3: Variation of free Piperazine in the solution with CO2 

loading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: The effect of the concentration of gas-liquid interface 

on the mass transfer flux. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Variation of CO2 mass transfer flux with film 

parameter and CO2 loading. 

of flux increases, more Piperazine reacts, therefore free Pz 

decreases. The decreasing trend in the Fig. 3 shows this 

tendency. Moreover, it is observed that with an increase 

in the total concentration, more free Pz exist in the 

solution which is a natural issue.  

In addition, the computed and analyzed mass transfer 

flux is used to measure and examine the efficiency and 

applications of the results obtained from the neural 

network model in different conditions of process.  

The relation between interfacial CO2 concentration and mass 

transfer flux is depicted in Fig. 4. In this figure, the effect 

of loading and interfacial concentration in mass transfer 

flux is taken into consideration. As it is observed,  

the increase in the interfacial concentration is indicative of 

the increase in CO2 absorption. This trend is highly 

evident in the ascending nature of the figure in which 

with an increase in the amount of loading in the single 

concentration of interface, mass transfer flux  

has decreased. 

In Fig. 5, variation of CO2 mass transfer flux with 

film parameter and CO2 loading was presented. It is clear 

that CO2 mass transfer was increased with increasing film 

parameter and decreasing CO2 loading. In reactive 

absorption processes, film parameter present the effect of 

chemical reactions on mass transfer so, this figure 

indicates that chemical reactions was increased the mass 

transfer of CO2 in the liquid phased. 

Fig. 6 shows the relationship between the partial 

pressure of CO2 in gas phase and the mass transfer flux. 

Naturally, in similar conditions, with an increase  

in the partial pressure of CO2 in gas phase, more absorption 

and mass transfer flux can be achieved. The effect of 

loading is seen in the way that the increase in the loading  

of a fixed concentration of solution in a single and fixed 

mass transfer flux leads to an increase in the amount  

of absorbed CO2 which is indicative of the increase  

in the partial pressure of CO2 in gas phase. In fact, the increase 

in the partial pressure of CO2 with an increase of loading 

in the amount of fixed flux is due to this fact.  

Comparison of ANN results of mass transfer flux with 

experimental data was shown in Fig. 7. As it is observed, 

the amount of correlation coefficient (R2) for the neural 

network is 0.986. However, the model of neural network 

for some data is undistinguishable. In other words,  

the complexities existing in the reaction types of piperazine, 

consideration of the existing parameters in an absorption 
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Table 6: The percentage of deviation in mass transfer flux computed using different methods. 

References Deviation (%) Reference 

[12] 12.00 Van Krevelen (1954) 

[14] 12.00 Decoursey (1974) 

[41] 10.11 Pangankar and M. M. Sharma (1974) 

[16] 14.90 Shen et al. (1999) 

[17] 10.00 Last and Stichlmair (2002) 

[27] 5.80 Etemad et al. (2015) 

This work 4.48 Artificial Neural Network (ANN) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: The effect of partial pressure of CO2 on the mass 

transfer flux. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Prediction of mass transfer flux by MLP neural 

network. 

 
process and some other hypothesis in the thermodynamic 

model of the problem may cause further errors. The mean 

square error for neural network is 5.48% which indicates 

that the neural network has had acceptable results in mass 

transfer flux prediction.  

In Table 6, the computed mass transfer flux in this 

research is compared with some other proposed methods 

based on the enhancement factor. As it is evident,  

the model of neural network has a smaller mean error 

compared to the other proposed relations.  

 

CONCLUSIONS 

In this work, mass transfer flux of CO2 in Pz solution 

was investigated using multilayer neural network.  

The experimental data of CO2 mass transfer flux presented 

in the literature were used to training and test of the neural 

network. The concentrations of equilibrium, ionic  

and molecular species were calculated applying modified 

Pitzer model. Input parameters of the neural network 

were obtained using Buckingham theorem. The effect of 

process parameters on mass transfer flux including CO2 

loading, concentration of Piperazine solution, film 

parameter were investigated. The increase in 

concentration of CO2 in interface was the same  

as the amount of absorption which leads to an increase  

in the mass transfer flux. In addition, the increase of loading 

in a fixed concentration leads to decrease of free Piperazine 

in the solution. The results of neural network, despite  

the complexities of reaction, absorption process and 

considered hypothesis in computing the concentration of 

CO2 in the liquid bulk and interface, are logical and 

acceptable results. The comparison between the 

experimental and predicted data indicates that the neural 

network is highly suitable for predicting the results of 

CO2 absorption process and contains better and more 

precise results compared to the other mathematical 
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models and a variety of relations proposed in the 

literature. 

 

Nomenclature 

*

C O
C

2
   Interfacial concentration of dissolved CO2 , mol/L 

C O
C

2

               Total carbon dioxide concentration, mol/L 

C O , b
C

2

         Molar concentration of CO2 in liquid phase,  

                                                                                   mol/L 

PZ                           Total Piperazine concentration, mol/L 

Dg                  CO2 diffusion coefficient in gas phase, m2/s 

Dl               CO2 diffusion coefficient in liquid phase, m2/s 

E                                                          Enhancement factor 

kl                        Liquid side mass transfer coefficient, m/s 

mi                                  Concentration of species i, mol/kg 

M                                       CO2 film conversion parameter 

C O
N

2

                                  CO2 absorption rate, mol/m2.s 

P                                               Total system pressure, psig 

C O
P

2

                                         Partial pressure of CO2, Pa 

C O
r

2

                             Overall CO2 reaction rate, mol/L.s 

                                                       CO2 loading, mol/mol 

g                                                      Gas film thickness, m 

l                                                  Liquid film thickness, m 
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