Correlation and Prediction of Solubility of CO2 in Amine Aqueous Solutions

Document Type: Research Article

Authors

1 Department of Chemical Engineering, Science & Research Campus, Islamic Azad University, Tehran, I.R. IRAN

2 Faculty of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, I.R. IRAN

3 Department of Gas Engineering, Petroleum University of Technology, Ahwaz, I.R. IRAN

Abstract

The solubility of CO2 in the primary, secondary, tertiary and sterically hindered amine aqueous solutions at various conditions was studied. In the present work, the Modified Kent-Eisenberg (M-KE), the Extended Debye-Hückel (E-DH) and the Pitzer models were employed to study the solubility of CO2 in amine aqueous solutions. Two explicit equations are presented to evaluate the concentration of H+ as well as the equilibrium constants of protonation reactions for the tertiary and sterically hindered amine aqueous solutions. Using the M-KE model, the equilibrium constants ofprotonationreactionsof amines were correlated in termsoftemperature, CO2 partial pressure and amine concentration. Also the E-DH and Pitzer models were used to correlate the solubility of CO2 in MDEA aqueous solution. The binary interaction parameters for the models studied in this work as well as the parameters for the equilibrium constants of protonation reactions were obtained using the Davidon-Fletcher-Powell (DFP) minimization method. The results show that the M-KE, E-DH and the Pitzer models can accurately predict the corresponding experimental data. Although the solubility data for CO2 in amine aqueous solutions have been reported in the literature to a large extent, accurate data are required to model the CO2 absorption process. Therefore, two criteria for the tertiary and sterically hindered amines were presented using the M-KE model to screen the experimental data.

Keywords

Main Subjects


[1] Guevara F.M., Libreros, M.E.R., Martínez A.R., Trejo A., Solubility of CO2 in Aqueous Mixtures of Diethanolamine with MDEA and 2-Amino-2-Methyl-1-Propanol, Fluid Phase Equlibria, 150-151, 721 (1998).

[2] Sartori G., Savage D.W., Sterically Hindered Amines for CO2 Removal from Gases, I&EC Fundam., 22, 239 (1983).

[3] Lee J.I., Otto F.D., Mather A.E., Solubility of Carbon Dioxide in Aqueous Diethanolamine Solutions at High Pressures, J. Chem. Eng. Data, 17 (4), p. 465 (1972).

[4] Woertz B.B., Experiments with Solvent-Amine-Water for Removing CO2 from Gas, Can. J. Chem. Eng., 50, 425 (1972).

[5] Lee J.I., Otto F.D., Mother A.E., Partial pressures of Hydrogen Sulfide over Aqueous Diethanolamine Solutions, J. Chem. Eng. Data, 18 (4), 420 (1973).

[6] Lee J.I., Otto F.D., Mather A.E., The Solubility of Mixtures of Carbon Dioxide and Hydrogen Sulphide in Aqueous Diethanolamine Solutions, Can. J. Chem.Eng., 52, 125 (1974).

[7] Lee J.I., Otto F.D., Mather A.E., The Solubility of H2S and CO2 in Aqueous Monoethanolamine Solutions, Can. J. Chem. Eng.,  52, 803 (1974).

[8] Lee J.I., Otto F.D., Mather A.E., “The Measurement and Prediction of the Solubility of Mixtures of  Carbon Dioxide and Hydrogen Sulfide in 2.5N Monoethanolamine Solution, Can. J. Chem. Eng.,  54, 214 (1976).

[9] Nasir P., Mather A.E., The Measurement and Prediction of the Solubility of Acid Gases in Monoethanolamine Solution at Low Partial Pressures, Can. J. Chem. Eng.,55, 715 (1977).

[10] Isaacs E.E., Otto F.D., Mather A.E., Solubility of Mixtures of H2S and CO2 in a Monoethanolamine Solution at Low Partial Pressures, J. Chem. Eng. Data,25, 118 (1980).

[11] LAL D., Otto F.D., Mather A.E., The Solubility of H2S and CO2 in a Diethanolamine Solution at Low Partial Pressures, Can. J. Chem. Eng., 63, 681 (1985).

[12] Jou F.Y., Mather A.E., Otto F.D., Solubility of H2S and CO2 in Aqueous Methyldiethanolamine Solutions, Ind. Eng. Chem. Process Des, Dev., 21, 539 (1982).

[13] Jou F.Y., Carroll J.J., Mather A.E., Otto F.D., Solubility of Mixtures of Sulfide and Carbon Dioxide in Aqueous N-Methyldiethanolamine Solutions, J. Chem. Eng. Data, 38, 75 (1993).

[14] Jou F.Y., Carroll J.J., Mather A.E., Otto F.D., The Solubility of Carbon Dioxide and Hydrogen Sulfide in a 35% Aqueous Solutionof Methyldiethanolamine, Can. J. Chem. Eng., 71, 264 (1993).

[15] Jane I.S., Li M.H., Solubility of Mixtures of Carbon Dioxide and Hydrogen Sulfide in Water + Diethanolamine + 2-Amino-2-Methyl-1-Propanol, J. Chem. Eng. Data,  42 (1), 98 (1997).

[16] Teng T.T., Mather A.E., Solubility of H2S , CO2 and Their Mixtures in an AMP Solution, Can. J. Chem. Eng.,  67, 846 (1989).

[17] Roberts B.E., Mather A.E., Solubility of CO2 and H2S in a Hindered Amine Solution, Chem. Eng. Comm., 64, 105 (1988).

[18] Tontlwachwuthlkul P., Meisen A., Lim C.J., Solubility ofCO2 in 2-Amino-2-methyl-1-propanol Solutions, J. Chem. Eng. Data, 36, 130 (1991).

[19] Kent R.L., Eisenberg B., Better data for amine treating, Hydrocarbon process., 55 (2), 87 (1976).

[20] Deshmukh R.D., Mather A.E., A Mathematical Model for Equilibrium Solubility of Hydrogen Sulfide and Carbon Dioxide in Aqueous Alkanolamine Solutions, Chem. Eng. Sci., 36, 355 (1981).

[21] Pitzer K.S., Thermodynamics of ElectrolytesI. Theoretical Basis and General Equations, J. phys. Chem, 77 (2), 268 (1973).

[22] Pitzer, K.S. and Kim, J.J.; Thermodynamics of Electrolytes. IV. Activity and Osmotic Coefficients of Mixed Electrolytes, J. Am. Chem. Soc, 96 (18), 5701 (1974).

[23] Hyden J.G., O´Connell J.P., A Generalized Method for Predicting Second Virial Coefficients,  Ind. Eng. Chem. Process Des. Dev.,14 (3), 209 (1975).

[24] Peng D.Y., Robinson D.B.,  A  new Two Constant Equation of State, Ind .Eng .Chem., Fundam.,15 (1), 59 (1976).

[25] Soave G., Equilibrium Constants from a Modified Redlich-Kwong Equation of State, Chem. Eng. Sci., 27, 1197 (1972).

[26] Chakma A., Meisen A., Solubility of CO2 in Aqueous Methyldiethanolamine and N,N-Bis(hydroxyethyl) piperazine Solutions, Ind. Eng. Chem. Res., 26, 2461 (1987).

[27] Sartori G., Savage D.W., Sterically Hindered Amines for CO2 Removal from Gases, I & EC Fundam.,22, 239 (1983).

[28] Chakraborty A. K.; Astarita, G. and Bischoff, K.B.; CO2 Absorption in Aqueous Solutions of Hindred Amines, Chem. Eng. Sci., 41 (4), 997 (1986).

[29] Edwards T.J., Maurer G.G., Newman G., Prausnitz J.M., Vapor-Liquid Equlibria in Multicomponent Aqueous Solutions of Volatile Weak Electrolytes, AIChE, 24 (6), 966 (1978).

[30] Chen C.C., Britt H.I., Boston J.F., Evans L.B., Extension and Application of the Pitzer Equation for Vapor-Liquid Equilibrium of Aqueous Electrolyte System with Molecular Solute, AIChE,25 (5), 820 (1979).

[31] RAO S.S., “Optimization Theory and Applications”, Second ed. Wiley Eastern Limited, pp. 509-516 (1984).

[32] Haji-Sulaiman  M.Z.,  Aroua  M.K.,  Analysis of Equilibrium Data of CO2 in Aqueous Solutions of Diethanolamine (DEA) ,Methyldiethanolamine (MDEA) and Their Mixtures Using the Modified Kent Eisenberg Mode, Trans. Inst. Chem. Eng., 76, 961 (1998).

[33] Xu G.W., Zhang C.F., Qin S.J., Gao W.H., Liu H.B., Gas-Liquid Equilibrium in a CO2-MDEA-H2O System and the Effect of Piperazine on it, Ind. Eng. Chem. Res., 37 (4), 1473 (1998). 

[34] Haji-Sulaiman M.Z., K.Aroua M., Pervez M.L., Equlibrium Concentration Profiles of Species in CO2-Alkanolamine-Water Systems, Gas. Sep. Purif., 10 (1), 13 (1996).

[35] Barth D., Tondre C., Delpuech J.J., Kinetics and Mechanisms of the Reactions of Carbon Dioxide with Alkanolamines: A Discussion Concerning the Cases of MDEA and DEA, Chem. Eng. Sci., 39 (12), 1753 (1984).

[36] Austgen D.M., Rochelle G.T., Chen C.C., Model of Vapor-Liquid Equlibria for Aqueous Acid Gas-Alkanolamine Systems. 2.Representation ofH2S andCO2 Solubility in Aqueous MDEA and CO2 Solubility in Aqueous Mixtures of MDEA with MEA or DEA, Ind. Eng. Chem. Res., 30, 543 (1991).

[37] Jones J.H., Froning H.R., Claytor E.E.Jr., Solubility of Acidic Gases in Aqueous Mono-ethanolamine,
J. Chem. Eng. Data,
4 (1), 85 (1959).

[38] Lawson J.D., Garst A.W., "Gas Sweetening Data: Equilibrium Solubility of Hydrogen Sulfide and Carbon Dioxide in Aqueous Monoethanolamine and Diethanolamine Solutions", J.Chem. Eng.Data, 21 (1), 20 (1976).

[39] Kennard M. L., Meisen A., Solubility of Carbon Dioxide in Aqueous Diethanolamine Solutions at Elevated Temperatures and Pressures, J. Chem. Eng. Data, 29 (3), 309 (1984).

[40] Muhlbauer  H.G.,  Monaghan P.R., New Equilibrium Data On Sweetening Natural Gas With Ethanol amine Solutions, The Oil And Gas Journal, 55 (17) ,139 (1957).

[41] Silkenbaumer D., Rumpf B., Lichtenthaler R.N., Solubility of Carbon Dioxide in Aqueous Solutions of 2-Amino-2-Methyl-1-Propanol and N-Methyldiethanolamine and Their Mixtures in the Temperature Range 313 to 413 K and Pressures up to 2.7MPa, Ind. Eng. Chem. Res.,37 (8), 3133 (1998).

[42] Kuranov  G.,  Rumpf  B.,  Smirnova  N.A., Maurer G., Solubility of Single Gases  Carbon Dioxide and Hydrogen Sulfide in Aqueous Solutions of N-Methyldiethanolamine in the Temperature Range 313-413 K at Pressures up to 5MPa, Ind. Eng. Chem. Res., 35 (6), 1959 (1996).

[43] Li Y.G., Mather A.E., Correlation and Prediction of the Solubility of CO2 in a Mixed Alkanolamine Solution, Ind.  Eng. Chem. Res.,  33, 2006 (1994). 

[44] Kamps A.P.S., Balaban A., Jödecke M., Kuranov G., Smirnova N.A., Maurer G., Solubility of Single Gases Carbon Dioxide and Hydrogen Sulfide in Aqueous Solutions of N-Methyldiethanolamine at Temperatures from 313 to 393K and Pressures up to 7.6 Mpa: New Experimental Data and Model Extension, Ind. Eng. Chem. Res., 40 (2), 696 (2001).

[45] Seyed Matin N., Goharrokhi M., Vahidi  M., Hosseini Jenab M., Najibi S.H., Abedinzadegan Abdi M., Solubility of CO2 in Aqueous Solutions of N-Methyldiethanolamine + Piperazine Using Extended Debye-Hückel Model, Japanian Journal of Chemical Eng., 40 (2), 2007. 

[46] Park J.Y., Yoon S.J., Lee H., Yoon J.H., Shim J.G., Lee J.K., Min B.Y., Eum H.-M., Kang M.C., Solubility of Carbon Dioxide in Aqueous Solutions of 2-Amino-2-Ethyl-1,3-Propanediol, Fluid Phase Equlibria,  202, 359 (2002). 

[47] Chauhan R.K., Yoon S.J., Lee H., Yoon J.-H., Shim J.-G., Song G.-C., Eum H.-M., Solubility of Carbon Dioxide in Aqueous Solutions of Triisopropanolamine, Fluid Phase Equlibria, 208, 239 (2003).