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ABSTRACT: A new correlation fumction for the calculation of viscosity for five typical supercrit-
ical gases is presented using the Rainwater-Friend and modified Enskog theory. It is shown that by
using accurate values for the thermal pressure and co-volume in the modified Enskog theory, this
correlation function is suitable for calculation of the viscosity of supercritical gases, without any
density and temperature limitation. For this purpose, two new correlation functions for the calcu-
lation of the thermal pressure coefficient and co-volume are presented. It is also shown that the co-
volume in the modified Enskog theory depends not only on temperature, but also on density. The
accuracy of the calculated viscosity is about 1%, which is much better than the previous work. It
is also shown that the modified Enskog theory can be extended to very high density-temperature

ranges by choosing correct values for the thermal pressure and co-volume.
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INTRODUCTION

The viscosity, 1,0f fluids is of great interest in various
research areas both applied and fundamental. Calculation
of the transport properties is clearly simplified when a
connection can be made with equilibrium properties. In
this context, the Enskog theory [1,2] holds a privileged
position for very good reasons [3].

In the derivation of the Boltzmann equation, there are
two primary assumptions: (i} only binary collisions are
important and (ii} the molecular diameter of the mole-
cules, o, is small compared to the mean free path of the
gas. Both of these assumptions are reasonable for dilute
gases but not for dense fluids. Enskog modified the
Boltzmann equation in an approximate manner for dense
gases [1,2].

Although the Enskog theory is an accurate theory for
a hard- sphere fluid, Enskog himself proposed and for-
mulated its application to real dense fluids. This transfor-
mation which is known as the modified Enskog theory
(MET), presents two modifications with respect to the
original Enskog theory. First, the actual pressure p is
replaced with the thermal pressure T(gp /3Ty, in order
to take into account the attractive forces among mole-
cules. Second, the co-volume b, is redefined in terms of
the second and third virial coefficients B and C and their
temperature denivatives:

d
By=B+T 8 caT5E (1)
dr dr

Wakeham and his co-workers [4] found very large dis-
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crepancies between the experimental data for nine simple
gases and theoretical predictions of the fult MET using
the well-known data compilations by Dymond and Smith
[5]. The latter step seriously hinders the application of the
theory to real systems, because of a lack of knowledge of
the virial coefficients for many fluids.

Since the modified Enskog formalism is an "ad hoc
theory,” these considerations can be interpreted as an
additional operation, which completes the procedure.
Therefore, the problem is reduced to the specifications of
the co-volume and thermal pressure of the systems of
interest.

The MET has been applied and tested [6-8] in the
supercritical range for only a few substances, although
there are some publications for the subcritical domain
[9] and mixtures f10-11].

The present paper tries to develop one correlation
function for the calculated thermal pressures and another
one for the co-volume of supercritical fluids over a wide
density and temperature range.

The result of the Enskog theory for viscosity that we
use here is [1,2]

n =170b0p[—;’-+0.800+0.761}’] (2)

In this equation,t) represents the viscosity of the hard-
sphere fluid, 1), the viscosity of a dilute hard- sphere gas,
by 1s the co-volume and is equal to 2ng°/3 , where G is the
hard sphere diameter, and Y=bypg(c), where p is the
number density and g(g) is the two-body hard- sphere
radial distribution function at contact. The quantity Y is
related to the hard- sphere equation of state as [2]

__P

Y -;—E—l (3)

In spite of the fact that the Enskog theory is strictly a
rigid- sphere theory, Enskog showed how the results
could be applied to real systems [1,2]. He suggested that
instead of relating ¥ to the actual pressure of the system
through Eq. (3), one should introduce the so-called "ther-
mal pressure," 7'(3p /3T), » where (gp /9T), is calted the
"thermal pressure coefficient".

The justification for this is that the pressure experi-
enced by a single molecule is made up of two parts, the
external pressure, p, due to the walls of the container, and
the "internal pressure,” (3E/a¥), , which represents the
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force of cohesion of the molecules. The thermodynamic
relation relates the sum of these to the thermal pressure.
Therefore, we can write ¥ as

R AN
Y_kaI:T(aTl] ! 4)

The above equation instead of using Eq. (3) and the
dilute gas expression [2] or zero-density values of ), give
us a complete approximate modification of the Enskog
rigid -sphere theory. The main advantage of this method
is that the transport properties of the dense gases can be
calculated from an equation of state alone.

Now we develop two correlation functions, one for
the calculation of the thermal pressure coefficient and
the other for co-volume.

CORRELATION FUNCTION FOR THERMAL
PRESSURE

One of the most difficult problems within the context
of the MET theory lies in the shortage of experimental
data for some basic magnitudes such as thermal pressure
coefficients which are tabulated for extremely narrow
temperature ranges, normally around the ambient temper-
ature for several types of liquids. Furthermore, the meas-
urements of the thermal pressure coefficients made by
different researchers often reveal systematic differences
between their estimates [12).

These problems have led us to try to establish a
correlation function for the accurate calculation of the
thermal pressure coefficient for different fluids over a
wide temperature and pressure range. The most straight-
forward way to reach the thermal pressure coefficient is
the calculation of (3p /37, using an accurate equation
of state which covers wide temperature and pressure
ranges. For this purpose, the equations of state for Ar
[13], N, {14 ], CO, [15 ], CH, [16], and C;H; [16] cov-
ering the fluid region over wide temperature and density
ranges were used for the calculation of (gp 737),, -

The calculated thermal pressure coefficients of Ar,
Ny, CO,, CHy, and C;H, are fitted well into the following
empirical correlation function:

dp . b . b -
L 2 1 { 2 5
[BT]p p pc[ +(a'+c+T')p +(a2+C+T,)p J( )
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where p* and 7* are p/p. and T'T,, where p, and T are
the critical density and critical temperature of the gas
respectively.

The leading term of this correlation function is the
thermal pressure coefficient of perfect gas, which each
gas obeys at low densities. The coefficients of Eq. (5) are
given in Table I. The temperature and density range for
each gas and also the average and maximum differences
between thermal pressure coefficients by direct deriva-
tive of equation of state and correlated values from Eq.
(5) are given in Table IL.

TABLE I: Coefficients of the Thermal Pressure Coefficient
Correlation Function, Eq. (5}

Fluid a b, c 2, b, )
Ar [ 05715 | -1.012 | 0.8234 |-0.0397 | 1.367
N, |[0.1519| 2.417 | 2.013 | 0.0239 | 1.057
CO, | 2.084 | -6.670 | 0.5651 [-0.5986| 3.865
CH, | 1.395 | -3.626 | 1.236 [-0.4410] 2.908
CyHg | 1.206 | -1.281 [-0.1189 |-0.1142| 1.046 )

TABLE IH: Density, Temperature range, Number of Data
Points, and Deviations for the Thermal Pressure Coefficients,
using Equation of State and Eg. (5}

?mi d Ponx | Tmin-Tmax| Aave(max) | &k 4 No:(}
(mol. dm®| (K) MPa/K) | (K} | (nm) | points
Ar | 45 |200-1000|7x10* (0.07)(143.23]0.3350| 115
N, 41 [150-1000]-2x10* (0.2)(85.229(0.3728| 178
CO,| 30 [400-1100[7x10° (0.1)[233.03(0.3800[ 90
CH,| 29 |200-600 |1x10° (0.02)(141.56|0.3791 90
CyHy| 11 | 400-600 |1x10° (0.01)|353.35|0.472}| 56 )

CORRELATION FUNCTION FOR CO-VOLUME
As pointed out before, the co-volume by is formally
given in terms of the second and third virial coefficients
and their derivatives with respect to temperature, Eq. (1).
The lack of consistency of these coefficients for many
systems is one of the main limitations of applying the
MET to real systems. Here we give a correlation function
for the calculation of the co-volume &,
In previous work [17,18] it was shown that the
most comprehensive theory for the calculation of viscos-
ity in the moderate density range (up to 2 moi.dny?) is the
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Rainwater-Friend theory [19,20] which is valid for both
monatomic and polyatomic gases. For higher densities,
use is made of the empirical observations that the trans-
port coeflicient (here viscosity) can always be wriiten
[21] as the sum of these contributions

n=n.§+N,08;p )+ D, (6)

where Tlo is the viscosity at the zero density limit, p is the
molar density, N, is Avogadro's constant, G is the colli-
sion diameter and Dy is the residual viscosity function
which includes the higher density contn'butions.B; is the
first order density correction, namely the reduced second
virial viscosity coefficient [22],
]
B, =Y b(T")"
i=0
where T*is _T_ and
elk
b, ==0.2201, b =2.075, b, =5512, b, =—13.91.
, =10.82, b, =—4.263, b, =0.5245,

the recommended values [18] for G and ¢/ are given in
Table IL. In the previous work, Dn was first considered to
be density dependent [17] and then density and tempera-
ture dependent [18], without stating any theoretical basis
for the mathematical form of Dn. Here we try to give a
somewhat theoretical basis for Dn.

It is believed that the MET is a suitable theory
for transport properties of non-dilute gases f[l,2].
Therefore it is possible to replace Dn by the viscosity
from the MET theory,

D, = nobop[% +0.800+0.76 IY] N
and then, using Eqgs. (6) and (7) yields b, as
nf‘no (1 + NAO'SB;p) _

b, =
nop[% +0.800+ 0.761Y]

(8)

As Eq. (R) shows, it is possible to calculate b, at each
density and temperature by knowing Mo , T and the ther-
mal pressure coefficient via Eq. (5). The accurate viscos-
ity data for Ar [23], N, [24], CO, [25,], CH, {16,26] and
C;Hg [27] over wide temperature and pressure ranges
were used via Eq. (8) for the calculation of by at each T
and p. The calculated b, via Eq. (8) with respect to den-
sity at different temperatures is shown for Ar in Fig. 1.
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Fig.1; Co-volume of argon according to Eq. (8} with respect
fo densily at different temperatures.

As shown, the density dependency of by is more signifi-
cant than its temperature dependence. The co-volume
by was fitted well with the following empirical correla-
tion function

Fol. 21, No. 2, 2002

of Eq. (9) and temperature and density ranges for the
above gases are given in Tables III and I'V respectively.

COMPARISON WITH EXPERIMENTAL DATA

The accuracy of this method in the calculation of the
viscosity of supercritical gases is tested in two ways:

a) The calculated values of viscosity based on the
modified Enskog and the Rainwater-Friend theory via
Eqgs. (6}, (7), (9) and (4) are compared with the same vis-
cosity data which were used via Eq. (8) for calculation of
the co-volume in Table I'V. This Table includes the max-
imum density p,.,, the temperature range, average (max-
imum) absolute percent deviation, along with the number
of data points. The percent average deviation between the
accurate viscosity data at different isotherms of CQO, [25]
and CH, [16,26] are also plotted in Fig.(2) over a wide
density range. Figure (3) shows the percent deviation
between the expenimental data and calculated values
A, % via Eq. (6) for different gases over a wide density
range.

b) As an independent test, the calculated values are
also compared with some other data for CQ, {28] and
CHj, [29] which were not used in getting the coefficients
of Eq. (8). As Fig. 2 shows the percent average and

5 )
byp. = 2 (e, + Té ) ,'I"r 9) (maximum) deviations between calculated and experi-
= where mental vaiues for CO, and CH, are within the experimen-
p* and T* are 2 and ;; respectively. The coefficients tal uncertainties.
pc Lol
Table II1: Coefficients of the Co-volume Correlation Function, Eq. (9)
(" Fluid e fy € f; € fy €4 fy es fs
Ar -0.0144 | 0.0181 | 0.1915 | 0.0506 | -0.2902 | 0.4160 | 0.1748 | -0.3263 | -0.0335 | 0.0689
N, 0.0402 | -0.0681 | -0.0254 | 0.9050 |6.779e-3 | -0.8804 | 0.0682 | 0.2250 | -0.0325 | 0.0188
co, 0.7162 | 17790 | 3.1767 | -8.2726 | -3.5391 | 102684 | 1.4790 | -4.7106 | -2.0401 | 0.7278
CH, 0.0251 | -0.0588 | 0.2391 ([ -0.0442 | -0.4551 | 0.7484 | 0.2755 | -0.5322 | -0.0575 | 0.1112
q CiHg [9.251e-3| -0.0933 | -0.1629 | 0.9244 | 0.0740 | -0.4105 [-7.95%e-3| 0.0185 ] 1.212¢-3 | 0.0109
Table IV: Average and Mawxcimum Percent Error of the Viscosity Using Eq. (6}
—
Fluid Ref. Pmax T~ Trnan 100MexpMcatl Mexe No. of points w
(mol. dm-3) ) avg, (max)
Ar 23 43 300-500 0.80 4.5 99
N, 24 20 300-1100 0.26 (L3 85
CcO, 25 25 400-1100 1.1 (5.6) 79
CH, 16,26 25 200-600 0.84 (4.2) 130
C3H, 73 1 400600 [0.40 2.4) 35 )
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Fig. 2:The percent deviation between the experimental viscos-
ity data for CO, [25,28] and CH, [16,26,29] and calculated
values via Eq. (6) at different isotherms.
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Fig. 3: The percent deviation between the experimental data

and calculated values, A, % via Eq. (6) for different gases over

a wide temperature- density range. The references for exper-
imental data are given in Table IV.
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DISCUSSIONS

In this work, the viscosity of 5 typical supercritical
gases is obtained using the Modified Enskog theory and
the Rainwater-Friend theory. In this scheme two new cor-
relation functions, one for the calculation of the thermal
pressure coefficient and the other for the co-volume are
obtained. The first is based on the equation of state of the
gas and the second on the Rainwater-Friend and the mod-
ified Enskog theory.

This correlation function works very well for super-
critical gases without any density or temperature limita-
tions with an average deviation between experimental
and calculated values of less than 1%. The accuracy of
this function is better than the correlation functions used
in previous work [17,18]. As Table I'V shows, the temper-
ature range validity for CO, is about 4 times its critical
temperature and the density validity range for Ar is about
3 times its critical density. Therefore, it seems that this
function can be applied at any density and temperature by
choosing correct values for thermal pressure coefficient
and co-volume.

Usually, the co-volume by of the MET is obtained via
the virial coefficients and their derivatives, Eq. (1), which
depends only on temperature. As pointed out before, this
is not a simple procedure mostly due to the absence of
accurate of such virial coefficients. But as Fig. 1 shows
b, are not only temperature dependent, but also density-
temperature dependent. Proposing by in this way, Eq. 9,
gives accurate values for by, since they are based on accu-
rate values of the viscosity and thermal pressure coeffi-
cient.

Precise information about thermal pressure coeffi-
cients are scarce, and evaluating it by direct derivative of
their equation of state is cumbersome for practical works.
The correlation function for this coefficient, Eq. (5)
which is based on the accurate equation of states, can cal-
culate easily and accurately this coefficient.

Acknowledgement

The authors wish to thank Dr. Saman Alavi for useful
comments. Research Council of Isfahan University of
Technology under grant 1CHD792 supports this work.

Received: 19* November 2001 ; Accepted: 30 April 2002



Iran. J. Chem. & Chem. Eng.

REFERENCES

[1} Chapman, S. and Cowling, T. ., "The Mathematical
Theory of Non-uniform Gases" Cambridge
University Press, Cambridge, (1970).

[2] Hirschfelder, J. O., Curtiss, C. F. and Bird, R. B.,
"Molecular Theory of Gases and Liquids" John
Wiley, New York, (1964).

[31 Amoros, J., Maseso, M. J. and Villar, E., Phys.
Chem. Lig., 24, 55 (1991).

[4] Ross, M., Szczepanski, R., Trengove, R. D. and
Wakeham, W. A., AIChE Annual Winter Meeting,
Paper 96C (1986).

[5] Dymond, J. H. and Smith, E. B., "The Virial
Coefficients of Pure Gases and Mixtures”,
Clarendon, Oxford, (1980).

[6] Hanley, H. J. M. and Mc. Carty, R. D., Physica, 60,
322 (1972).

[71 Hanley, H. J. M. and Cohen, E. G. D., Physica, 83A,
215 (1976).

[8] Sengers, J. V. Int. J. Heat Mass Transfer, 8, 1103
(1965).

[9] Sheng, W., Chen, G.-J. and Lu, H.-C., Int. J.
Thermophys., 10, 133 (1989).

[10] Castillo, R., Villaverde, A. and Orozco. J., Mol.
Phys., 74, 1315 (1991).

[11] Kincaid, J. M., Perez, S. and Cohen, E. G. D., Phys,
Rev. 4, 38, 3628 (1988).

[12] Amoros, J., Solana, J. R. and Villar, E., Mater
Chem. Phys., 10, 557 (1984).

[13] Stewart, R. B. and Jacobsen, R. T., /. Phys. Chem.
Ref. Data, 18, 639 (1989).

[14] Jacobsen, R. T., Stewart, R. B. and Jahangiri, M., /.
Phys. Chem. Ref. Data, 15, 735 (1986).

Viscosity Calculation of ...

Vol. 21, No. 2, 2002

[15] Span, R. and Wagner, W., J. Phys. Chem. Ref. Data,
25, 1509 (1996).

[16] Younglove, B. A. and Ely, . F., J. Phys. Chem. Ref.
Data, 16, 577 (1987).

[17] Najafi, B., Ghayeb, Y., Rainwater, J. C., Alavi, S.
and Snider, R. F., Physica, 260 4, 31 (1998).

[18] Najafi, B., Ghayeb, Y. and Parsafar, G. A, Int. J
Thermophys., 21, 1011 (2000).

[19] Friend, D. G., and Rainwater, J. C., Phys. Lett., 107,
590 (1984).

{20] Rainwater, J. C. and Friend, D. G., Phys. Rev., 36,
4062 (1987).

[21] Millat, J. Dymond, J. H. and Nieto de Castro, C. A.
(eds), "Transport Properties of Fluids" Cambndge
University Press, Cambndge. (1996).

f22].Ref. [18], Eq. 8.

[23] Younglove, B. A. and Hanley, H. J. M., J. Phys.
Chem. Ref. Data, 15, 1323 (1986); Trappeniers, N.
J., van der Gulik, P. S. and van den Hooff, H. Chem.
Phys. Lett., 70, 438 (1980).

[24] Stephan, K., Krauss, R. and Laesecke, A. J. Phys.
Chem. Ref Data 16:993 (1987).

[25] Fenghour, A. Wakeham, W. A. and Vesovic, V. J.
Phys. Chem. Ref. Data, 27:31 (1998).

[26] Friend, D. G., Ely, J. F. and Ingham. H. J. Phys.
Chem. Ref. Data, 18: 583 (1989).

[27] Vogel, E., Kuchenmeister, C and Bich, E., J Phys.
Chem. Ref. Data, 27.947 (1998).

[28] V. Vesovic, V., Wakeham, W. A., Olchowy, G. A, J.
V. Sengers, J. V., Watson, J. T. R. and Millat, J., J.
Phys. Chem. Ref. Data 19:763 (1990).

[29] Diller, Darwin E, Physica A 104: 417 (1980).

79



