Electrocatalytic Oxidation of Hydrazine at Epinephrine Modified Glassy Carbon Electrode (EPMGCE).

Document Type: Research Article

Authors

1 Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Tabriz, Tabriz, I.R. Iran

2 Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Tabriz, Tabriz, I.R. Iran

Abstract

A thin film of epinephrine (EP) was electrochemically deposited on the surface of glassy carbon electrode previously activated in NaHCO3 solution. The cyclic voltammograms of the modified electrode indicate that the surface confined EP are strongly dependent on the solution pH, as expected for quinone/hydroquinone functionalities. The EP-modified glassy carbon electrode exhibited catalytic activity towards the electrooxidation of hydrazine, which appeared as a reduced overpotential especially in pH = 7.5. The diffusion coefficient of hydrazine was estimated using chronoamperometry. The catalytic rate constant, Kh, of the modified electrode for the oxidation of hydrazine was determined using the cyclic voltammograms recorded at low scan rates as well as the RDE voltammetric approach. It has been shown that the EP-modified electrode can be used as an amperometric sensor in the analysis of trace amount of hydrazine with high sensitivity and good limit of detection (0.83 mM). Amperometry by EP-modified electrode was used for determination of hydrazine in boiler feed water and the accuracy of the results was verified by comparison with those obtained from standard ASTM method.

Keywords

Main Subjects


[1] Mark, H.F., Othmer, D.F., Overberger, C.G. and Seaborg, G.T., eds, Kirk-Othmer Encyclopedia of Chemical Technology, 3rd edn. Vol. 12, John-Wiley, New York, p. 734 (1980). 
[2] Zhao, C., Song J. and Jhang, J., Anal. Lett., 34, 2111 (2001).
[3] Ravichandran, K. and Baldwin, R.P., Anal. Chem., 55, 1782 (1983).
[4] Holmstrom. S.D., Sandlin. Z.D., Steinecker, W.H. and Cox. J.A., Electroanalysis, 12, 262 (2000).
[5] Fleischmann, M., Korinek, K. and Pletcher, D., J.Electroanal. Chem., 34, 499  (1972).
[6] Kurinek, K., Korita, J. and Nusiloua, M., J. Electroanal. Chem., 319, 21 (1969).
[7] Karr, S. and Meites, L., J. Am. Chem. Soc., 82, 906 (1962).
[8] Harrison, J.A. and Khan, Z.A., J. Electroanal. Chem., 26, 1 (1970).
[9] Harrison, J.A.and Khan, Z.A., J.Electroanal. Chem., 28, 153 (1970). 
[10] Jyh- Myng, Z.and Tang, J.S., Anal. Chem., 67, 208 (1995).
[11] Innocenza, C., Guascifo, G., Maria, R., Anna, S.M. and Castillo, J.R., Anal. Chim. Acta, 354, 333 (1997).
[12] Cataldi, T.R.I., Debenedetto, G. and Bianchini, A., J. Electroanal. Chem., 471,  42 (1999).
[13] Chen, S.M., Electrochim. Acta., 43, 3359 (1998). 
[14] Lin, C. and Bocarsly, A.B., J. Electroanal. Chem., 300, 325 (1991). 
[15] Guerra, S.V., Kubota, L.T., Xavier. C.R. and Nakagaki, S., Anal. Sc., 15, 1231 (1999). 
[16] Cepria, G. and Castillo, J.R., J. Appl. Electrcochem., 28, 65 (1998).
[17] Perez, E.F., Neto, G.D., Tanaka, A.A. and Kubota, L.T., Electroanalysis, 10, 111  (1998). 
[18] Shankaran, D.R. and Narayanan, S.S., Bull. Electrochem., 14, 267 (1998).
[19] Wei, M.J., Bozidar, O., Xueji, Z. and Boris, P., Electroanalysis, 12, 48 (2000).
[20] Wang, J. abd Pingarron, J., Electroanalysis, 9, 1205 (1997).
[21] Isaacs, M., Aguirre, M.J., Torolabbe, A., Costamanga, J., Paez, M. and Zagal, J.H., Electrochim. Acta, 43, 1821 (1998). 
[22] Peng, W., Yi, Y., Xiangping, W. and Guoyi, Z., J.Electroanal.Chem., 498, 130 (2000).  
[23] Pamidi, P., Wang, J., Electroanalysis, 8, 244 (1996). [24] Wang, J., Cheu, Q. and Cepria, G., Talanta, 43, 1387 (1996).
[25] Sointorou, C.G. and Nikolellis, D.P., Electroanalysis, 10, 691 (1998).
[26] Yu, A.M. and Chen, H.Y., Anal. Lett., 30, 599 (1997). 
[27] Golabi, S.M. and Zare, H.R., J. Electroanal. Chem., 465, 168 (1999). 
[28] Golabi, S.M. and Zare H.R., Electroanalysis, 11, 1293 (1999).
[29] Golabi, S.M., Zare H.R. and Hamzeloo, M., Microchem. J., 69, 111 (2001).
[30] Golabi, S.M. and Rezaei, B., J. Solid State Electrochem., Submitted for  publication.
[31] You, T.Y., Gui, J.Y., Dong, S.J. and Wang, E., J. Pharm. & Biomed. Analysis,19, 231 (1999). 
[32] Niu, L., You, T.Y., Gui, J.Y., Wang. E. and Dong, S.J., J. Electroanal. Chem., 448, 79 (1998). 
[33] Li, T. and Wang, E., Electroanalysis, 9, 1205 (1997). 
[34] Wang. J., Pamidi, P., Renchler, V.A., Clifford, L. and White, C., J. Electroanal. Chem., 404, 137 (1996). 
[35] Andonoglou, P.P., Jannakoudakis, A.D. and Jannkoudakis, P.D., Electrochim. Acta, 44, 1455 (1998). 
[36] Pingarron, J.M., Ortiz, H.I., Gonzalez-Cortes, A. and Yanez-Sedeno, P., Anal. Chim. Acta, 439, 281 (2001).  
[37] Wilson and Gesvolds, Textbook of Organic Medicinal and Pharmaceutical Chemistry, 8th edn. p. 402  (1982). 
[38] Hawley, M.D., Tatawawadi, S.V., Pickarski, S. and Adams, R.N.,  J. Am. Chem. Soc., 89, 447 (1967). 
[39] Morrison, R.T. and Boyd, R.N., Organic Chemistry, 6th edn. p.979 (1992). 
[40] Lorenzo, E., Sanchez, L., Pariente, F., Tirado, J. and Abruna H.D., Anal. Chim. Acta, 309, 79 (1995). 
[41] Zare, H.R. and Golabi, S.M., J. Electroanal. Chem., 464, 14 (1999).
[42] Jeagfeldt, H., Kuwana, T. and Johansson, G., J. Am. Chem. Soc., 105, 1805 (1983).  
[43] Gorton, L. and Johansson G., J. Electroanal. Chem., 113, 151 (1980). 
[44] Pariente, F., Lorenzo, E., Tobalina, F. and Abruna H.D., Anal. Chem., 67, 3936  (1995).
[45] Scharf, U. and Grabner, E.W., Electrochim. Acta, 41, 233 (1996). 
[46] Bard, A.J.; Faulkner, L.R., Electrochemical Methods, 2nd edn. John Wiley, New York, p. 341 (2001).
[47] Andrieux, C.P. and Saveant, J.M., J. Electroanal. Chem., 93, 163 (1978).
[48] Miller, J.N. and Miller, J.C., Statistics and Chemometrics for Analytical Chemistry, 4th edn., Pearson Education Limited, Essex, p.121 (2000). 
[49] ASTM D 1385-88 protocol for determination of hydrazine in water  (Reapproved 1991).