Liquid-Vapor Density of Sulfur Hexaf luoride in the Critical Point

Document Type: Research Article


Faculté des Sciences, Département de Chimie, Université Badji-Mokhtar, B.P. 12, El-Hadjar, Annaba (23200), ALGERIA


The thermodynamic properties of fluids can be predicted using the global equations of state. Among these thermodynamic properties of fluids, we choose the densities of the liquid and vapor phases. This paper considers the application of the crossover model to the vapor-liquid rectilinear diameter of sulfurhexafluoride. We also present a comparison of the crossover model equation with the experimental data.


Main Subjects

[1] Fisher, M.E., “In critical phenomena”, Vol. 186 of lectures Notes in Physics, edited by Hahne, F. J. W.   (Springer-Verlag, Berlin), p. 1 (1982).
[2] Abbaci, A., On the critical phenomena of fluids,  J. S. A. C., 4(1), 97 (1994).
[3] Chen, Z.Y.,  Abbaci, A.,  Tang, S., and  Sengers, J. V., Golbal thermodynamic behavior of fluids in the critical region., Phys. Rev. A, 42, 4470 (1990).
[4] Abbaci, A., Global thermodynamic behavior of fluids and fluid mixtures in the critical region, Ph.D. Thesis, University of Maryland (1991).
[5] Chen, Z.Y.,  Albright, P.C., and Sengers, J. V., Crossover behavior from singular critical to regular classical thermodynamic behavior of fluids, Phys. Rev. A, 41, 877 (1990).
[6] Wilson, K. G., Renormalization group and critical phenomena, Phys. Rev. B, 4, 3174 (1971).
[7] Nicoll,  J. F., and Albright, P. C., Crossover functions by renormalization-group matching: Three-loop results, Phys. Rev. B, 31, 4576 (1985).
[8] Nicoll, J. F., Critical   phenomena of fluids: Landau- Ginzburg-Wilson model, Phys. Rev. A, 24, 2203 (1981).
[9] Bagnuls,  C., and  Bervillier, C., Non-asymptotic critical behavior from field theory at d=3: The disordered-phase case, Phys. Rev. B., 32, 7209 (1985).
[10] Patashinskii, A. Z. and Potrovskii, V. I., Fluctuation theory of phase transition,  Pergamon, Oxford (1979).
[11] Ley-Koo, M. E. and Green, M. S., Consequences of the renormalization group for the thermodynamics of fluids near the critical point,  Phys. Rev. A, 23, 2650 (1981).
[12] Weiner, J., Langley, K. H., and Ford, N. C., Jr., Experimental evidence for a departure from the law of the rectilinear diameter, Phys. Rev. Lett., 32, 879 (1974).
[13] Ley-Koo, M. and Green, M. S., Revised and extended scaling for coexisting densities of SF Phys. Rev. A, 16, 2483 (1977).
[14] Pestak, M. W., Goldstein, R. E. , Chan, M. H. W., de Bruyn, J. R., Balzarini, D. A.,  and  Ashcroft,  N.  W., Three-body interactions, scaling variables, and singular diameters in the coexistence curves of fluids, Phys. Rev. B, 36, 599 (1987).
[15] Abbaci, A.,  and Sengers, J. V., An assessment of the thermodynamic behavior of sulfurhexafluoride in the critical region,  Technical report BN 1111, University of Maryland, College Park, pp. 59, USA (1990).
[16] Abbaci,  A.,  International  Conference  on the thermodynamic properties of Fluids, Boulder, Co, U.S.A., June (1994).
[17] Biswas, S. N., Trappeniers, N. J., Hoogland, J. H. B., PVT properties of sulphur-hexafluoride in the
gas-liquid critical region, Physica A, 126, 384  (1984).
[18] Gilgen, R., Kleinrahm, R., and Wagner, W., Measurements of the (pressure, density, temperature) relation of sulfur-hexafluoride in the homogeneous region, J. Chem. Thermodynamics, 24, 953 (1992)
[19] Kostrowicka Wyczalkowska, A. and Sengers, J. V., Thermodynamic properties of sulfurhexafluoride in the critical region,  J. Chem. Phys., 111,   1551 (2001).