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ABSTRACT: The application of ion current signals is one of the most recent approaches in engine 
management systems. By applying a small constant DC voltage across the electrodes of the spark 
plug and measuring the current through the electrode gap, the state of gas may be measured and 
investigated. In this paper a computer code is developed in order to analyze the state of gas during 
the combustion period. It is shown that there is a strong correlation between the peak pressure and 
the maximum current position. It is also shown that among all combustion products, the NO has the 
most contribution in generating electrical current. The two zones model is used for calculating the 
cylinder pressure and temperature.    
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INTRODUCTION 
The technique of measuring ion currents of flames has 

been well known for a long time. It is almost two 
centuries, since Volta in the year (1801) discovered the 
electrical conductivity of free flame propagation. Tufts 
(1906) was the first scientist arguing for an ionization 
process that had something to do with the chemistry in 
the flame front. In the early 1950’s, this process was 
thoroughly investigated as one of the explanations for  
the high flame speed of burning hydrocarbons [1-4]. 
Recently, this area is the subject of a new born interest. 
The spark plug of SI engines is used as ion current 
sensors. The measured ion current, is related to the 
physical and chemical properties of the combustion 
products inside cylinder [5-15].  

In this paper a computer code is developed in order to  
 
 
 

simulate the state of gas and the ion current during the 
post flame period. The relation of ion current with 
temperature and pressure are investigated. It is shown that 
there is a strong correlation between the ion current 
magnitude and the instantaneous temperature and 
pressure of the cylinder. Also, the contribution of 
different  species  in ion current generation is determined. 
 
THEORY AND FORMULATION 
The ion generating process 

The ionization process may briefly be described as 
follows; the heat in the flame front ionizes the gas in the 
combustion chamber and the gas becomes conductive. An 
electrical field is then generated in the combustion 
chamber and the current is measured. The ionization  
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Fig. 1: Two different probes (a) the spark plug (b) A separate 
probe similar to the spark plug. 
 
current contains information about the combustion 
process and pressure. Equation (1) is an example of an 
ideal reaction in an internal combustion engine. 

OH4CO3O5HC 22283 +→+                                     (1) 

However, the actual combustion process has several 
stages. The high temperature inside the cylinder ionizes 
the molecules. The ionized molecules are recombined and 
more stable molecules are generated. Equation (2) 
includes some preliminary reactions in ion creation: 

−+ +→+ eCHOOCH                                                   (2) 

COOHOHCHO 32 +→+ ++  
−+ +→+ eHCHCCH 3322  

The generated ions are not limited to those mentioned 
in Equation (2) Other ions such as C3H3O+, OH- and O2-

and a considerable amount of H3O+ and C3H3
+

 are also 
generated. These positive ions and electrons become 
carriers of ionic currents [4]. 

To measure the degree of ionization, a probe is 
inserted into the combustion chamber. The probe is 
biased in order to create an electrical field that attracts 
and rejects ions in the vicinity of the probe. It is a well-
known and confirmed fact that a positively biased probe 
generates a higher level signal [9, 16].  
 
Measuring principles 

The ionization current in the  combustion  chamber  is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Ionization current signal characteristic in three 
phases: Ignition, Flame front and Post flame. 
 
measured either by a modified version of spark plug or 
with a separate pin inserted into the combustion chamber. 
These two different types of ion current sensors are 
shown in Fig. 1. Using a modified spark plug to measure 
the ion current, eliminates the extra cost of an additional 
measuring device. However, no ionization signal may be 
measured during ignition pulses. When the ignition is 
completed, the spark plug is available for measuring the 
ion current during the remaining part of the combustion 
[17].  
 
Characterization of the ionization current 

Many engine parameters such as temperature, air  
to fuel ratio, fuel type, E.G.R., by blow gases, engine  
load and humidity in air affect the ionization current  
[ 9,10,16,18,19]. 

In Fig. 2 the ionization signal is displayed as a 
function of crank angle. It has three phases: ignition, 
flame front and post flame. If we use of spark plug as 
ionization sensor in the ignition phase, the ionization 
signal is disturbed by the ignition pulse. Therefore, the 
measured ion current is disturbed and becomes noisy. At 
the next phase, the ion current signal increases rapidly. 
The high level signal at the beginning of this phase is due 
to the high ionization degree of the flame. Some of the 
generated ions in the flame are recombined quickly, to 
produce more stable molecules. Other ions have longer 
residential. The flame stays close to the spark plug for a 
short time, and then it propagates through the combustion 
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chamber. This explains why the flame front has a steeply 
peak which decreases quickly. When this phase is over 
only the more stable ions remain. 

The post flame ionization is mostly constituted of 
H3O+, CO- and their hydrates [14].  
 
Ionization Current Modeling 

In order to derive appropriate relations between 
temperature, pressure and ion current, two major factors 
have to be evaluated. The ionization ratio and electron 
drift velocity are used for ion current analyzing. 
 
Ionization ratio and Saha’s equation 

The ionization ratio η  is given by the following 

relation: 

i0

e

ρρ
ρ

η
+

=                                                                    (3) 

Assuming local thermodynamic equilibrium, the 
relation between the number densities of two ionized 
states with the electron number density is given by Saha’s 
equation [20, 21]: 
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This equation, in our case, may be viewed as a 
balance between the two processes of ionization and 
recombination. The weakness of this equation is that it 
does not, take into consideration, except for the ionization 
energy, any species factor.  

Taking only the dominating factor into account, we 
get the following solution. 

i0

H
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ρ
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=                                                                (5) 

Where 






−=
− T

E
exp

B
B

)
h

Tm2
(2 i

1i

i2/3
2

e
H σ

σπ
ρ  

Notice that ρ0+ρi is equal to the number of heavy 
particles. It is also assumed that each molecule or atom 
losses at most only one electron (one ionization degree).  

 
Electron drift velocity 

The electron drift velocity is a function of the 
mobility of the electrons, µ , and the electrical field X: 

Xd µυ =                                                                         (6) 

There are a lot of interactions between electrons,  
ions and neutrals. We have elastic collision, in elastic 
interaction like excitation, ionization recombination, etc. 
The possibility of interaction between particles is given 
by their cross sections S, which is defined in classical 
physics, as the surface a particle sees as it passes through 
a volume, divided by density. Introducing λ as the mean 
free path length, we have: 

S
1

totρ
λ =                                                                        (7) 

where 

∑=
i

iitot x ρρ                                                                (8) 

We also introduce the species fraction xi, and iρ  as 

the number density of species, i. 
If we assume that the gas temperature is the major 

factor and consequently the contribution of the electrical 
field is relatively small, we get the following expression: 

Tem
e
υ
λ

µ =                                                                      (9) 

where 

e
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Electrical current 

Assuming that the geometry of the gas volume is 
cylindrical, we may formulate the current as: 

2
di reI πυρη=                                                              (10) 

Substituting Eqs.(5), (6) and (9) in Equation (10), we 
obtain;  
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In this relation the current I, is a function of three 
parameters; temperature T, number density of total 

species totρ and species fraction ix . This is derived 

assuming  only  one  ionization  degree. Let,  

T
P

tot σ
ρ =                                                                     (12) 

Then; 
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−= −

T2
E

expTPCxI i4/32/12/1
i σ

                                 (13) 

Where C is the product of all physical constants in 
Equation (11). 

The relative current may be written as: 
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Variables, Tmax, Pmax and xmax are temperature, 
pressure and total number density at Imax, respectively. 

 
Ionization model description 

The ion current model is derived based on the Saha-
Boltzmann's equation. It is assumed that the geometry of 
gas volume in the combustion chamber is cylindrical. We 
are also considering a one ionization degree for this 
model. This model, as given by equation (13) explains 
the relation between ion current and temperature, 
pressure and fraction species during the post flame 
period. The model also represents the contribution of 
each species in the generated ion current. It should be 
noted that the presented model is only valid for the post 
flame period. Therefore, it is not valid in the ignition and 
flame front phases. 
 
Two Zones Model 

In order to evaluate variables such as temperature, 
pressure and mole fraction of species, the two zone model  
is implemented [22, 23]. The major assumptions are: 

a) The original charge is homogenous. 

b) The pressure at any time is uniform throughout 
the cylinder. 

c) The volume occupied by the flame reaction zone 
is negligible. 

d) The burned gas is at full thermodynamic 
equilibrium. 

e) The unburned gas is frozen at its original 
composition. 

f) Both burned and unburned gases are uniform in 
local specific heat. 

g) There is no heat transfer between burned and 
unburned zones. 

The governing equations in combustion process are: 

bbb QWE =+                                                              (15) 

QWE =+                                                                    (16) 

uuuu TRmPV =                                                           (17) 

bbbb TRmPV =                                                            (18) 

mmm ub =+                                                               (19) 

VVV bu =+                                                                (20) 

QememememVP bbuubbuu
&&&&&& =++++                    (21) 

( ) ( )[ ] ( ) bb
u

bbbbub QmP1VPtemmtete &&&&& =−++−
ρ

   (22) 

Equations (15) to (22) are used for two zone 
combustion model calculation. Since there are only 6 
equations with 7 unknowns, we need another equation. In 
this paper Wiebe function is used for mass burn rate as 
the last equation. 

bu mmm &&& +=                                                                (23) 

Wiebe function is defined as follows: 
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Parameters "a" and "n" are constants [24]. 
 

SIMULATION  RESULTS 
In this section the ion current is evaluated based on 

the related equations with parameters given in Table 1. 
Also the contribution of each species in current 
generation is calculated. 
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Table 1: Parameters in Eq. (11). 
 

U = 80V 

B0 = Bi 

r = 1mm 

d = 1.5mm 

e = 1.6022×10-19C 

me = 9.1095×10-31kg 

h = 6.620755×10-34 (J.s / molecule)  

σ = 1.38065812×10-23 (J / K.molecule) 

 
Table 2: Ionization energy of species and the maximum 
generated currents. 

Species Ionization Energy 
(eV)[10] 

Current (µ A)  
(Calculated) 

N2 15.5 0.001105 

N 14.53 6.91e-6 

NO 9.25 46.8366 

CO 14.05 0.004329 

CO2 13.84 0.013246 

O 13.614 0.001926 

O2 12.2 0.117968 

H 13.595 0.001961 

H2 15.427 9.6e-5 

H2O 12.6 0.170119 

OH 13.18 0.01272 

 
The two zones model is applied in this paper and it is 

assumed that the combustion products are 11 species as 
shown in Table 2. In this table the ionization energy and 
generated current are shown for all species. It is very 
interesting to see that NO is the only major source for the 
ion current generation and the contribution of other 
species   is   negligible. A  chart  based   on  the  proposed 

results is shown in Fig. 3. 
In Figs. 4 and 5 the cylinder pressure and temperature 

are shown verses the crank angle, while Fig. 6 shows the 
burned gas temperature variation. The maximum burned 
gas and mean cylinder temperatures are 2710 K and 2516 
K, respectively. 

The difference between the burned gas and the mean 
cylinder temperature variation verses crank angle is 
shown in Fig. 7. 

Fig. 8 shows the variation of ion current in post flame 
period. The ion current has its peak value at the crank 

angle equal to o372 .  
Fig. 9 shows the simulation results of normalized 

pressure and ion current verses crank angle. Fig. 10 
shows the experimental results for the same variables 
[16]. As it is shown in these figures, the maximum ion 
current coincide with the peak pressure position. 
According to the state equation, when volume is constant, 
the maximum pressure and temperature are coincided to 
each other. Also, maximum NO concentration occurs at 
the maximum temperature. Therefore, the maximum ion 
current occurs at the peak pressure position. 
 
CONCLUSION 

In this paper the following results are obtained: 
1- The generated ion current during the post flame 

period in SI engine is simulated. The simulation has been 
analyzed with a thermodynamic ionization equilibrium 
approach. 

2- A computer code is developed to investigate the 
simulation results. 

3- The simulation results indicate that the ionization 
of NO is the major source of free electrons in a fully 
combusted hot gas.  

4- The correlation between peak pressure and maxi-
mum current position is clearly shown. 

5- The simulation results are validated by comparing 
with the experimental test data. 
 
Nomenclature 
Bi                                                Internal partition function 
d                                                        Spark plug gap (mm) 
E                                                            Internal energy (J) 
Ei                                      Ionization energy of state i (eV) 
e                                                            Electric charge (C) 
eb                      Burned gas specific internal energy (J/kg) 
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Fig. 3: Contribution of all species in ion current generation  
( Calculated). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Cylinder pressure variation (Simulated). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Mean cylinder temperature verses crank angle 
(Simulated). 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: Burned gas temperature variation verses crank angle 
(Simulated). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: Burned gas and cylinder mean temperature difference 
variation verses crank angle (Simulated). 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 8: Ion current variation in post flame period (Simulated). 
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Fig. 9: Normalized ion current and pressure variation via 
crank angle  (Simulated). 
 
eu                  Unburned gas specific internal energy (J/kg) 
h                                     Plank’s constant (J.sec/molecule) 
I                                                            Electric current (A) 
i                                                      Electric current density 
m                                            Mass of in cylinder gas (kg) 
me                                                           Electron mass(kg) 
P                                  Combustion chamber pressure (Pa) 
Q                                                                Heat transfer (J) 
R                                                     Gas constant (J / kg.K) 
r                                                                      Radius (mm) 
S                                                     Particles cross sections 
T                                                  Absolute temperature(K) 
U                                                                      Voltage (V) 
V                                                        Cylinder volume(m3) 
W                                                                  Work done (J) 
X                                                      Electrical field (N / C) 
xb                                                       Mass fraction burned 
xi                                                                Species fraction 
 
Greek Letters 
ρ                                                               Density (kg / m3) 
ρe                                                  Electron number density 
ρi                                            Number density of species, i 
ρ0                                                  Neutrals number density 
ρtot                                        Number density of all species 
λ                                                           Mean free path (m) 
η                                                                  Ionization ratio 
σ                              Boltzmann’s constant (J/K.molecule) 
µ                                                         Mobility (C.sec / kg) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10: Normalized ion current and pressure variation via 
crank angle  (Experimental). 
 
θ                                                              Crank angle (rad) 
θs                                       Start of combustion angle (rad) 
∆θb                                            Combustion duration (rad) 
υd                                                      Drift velocity (m/sec) 

υT                                       Mean random velocity (m/sec) 
 
Subscripts 
b                                                                               Burned 
i                                     Number density of ionized states i 
u                                                                          Unburned 
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