Experimental Evaluation of Batch and Continuous Production of Baker’s Yeast under Computer Controlled pH

Document Type: Research Article


Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11365-9465, Tehran, I. R. IRAN


Steady state and dynamic fermentations of baker's yeast in molasses based media were analyzed in a laboratory scale bioreactor. Sugar and biomass balances together with the Monod biokinetics were used to develop the process model. Parameters of the model were obtained using collected experimental data. Model predicted open loop responses to step changes in feed concentration as well as dilution rate were compared with experimental data and a good agreement was observed. Despite the nonlinear nature of pH in a biological system, it was controlled successfully using a special on-off strategy implemented on a personal computer. Results proved that productivity of the continuous process was at least twice that of the batch process.


Main Subjects

[1] Terrell, S.L., Bernard, A.  and Bailey, R.B., Ethanol from whey: Continuous fermentation with a catabolite repression-resistant saccharomyces cerevisiae mutant, Appl. Environ. Microbiol (1984).
[2] Taherzadeh, M. J., Millati, R. and Niklasson, C. Continuous cultivation of dilute-acid hydrolyzates to ethanol by immobilized saccharomyces cerevisiae, Appl. Biochem. Biotechnol (2001).
[3] Monte Alegre, R., Rigo, M. and Joekes, I., Ethanol fermentation of a diluted molasses medium by        saccharomyces cerevisiae immobilized on chrysotile, Braz. Arch. Biol. Technol (2003).
[4] Caylak, B. and Suskan, F.V., Comparison of different production processes for bioethanol, Turk. J. Chem. (1998).
[5] Lu, C.T., Guillan, A., Roca, E., Nunez, M.J. and Lema, J.M., Population dynamics of a continuous fermentation of recombinant saccharomyces cerevisiae using flow cytometr,Biotechnol. Prog. (2001).
[6] Keulers, M., Satroutdinov, A.D., Suzuki, T. and Kuriyama, H., Synchronization affector of autonomous short-period-sustained oscillation of saccharomyces cerevisiae, Yeast (1996).
[7] Enfors, S. O., Hedenberg, J.  and  Olsson, K., Simulation of the dynamics in the baker’s yeast process, Bioproc. Eng. (1990).
[8] Zhang, X.C., Visala, A., Halme, A. and Linko, P., Functional state modeling approach for bio-processes, local models for aerobic yeast growth process,  J. Process Contr., 4 (1994).
[9] Reddy,  G. P.  and  Chidambaram,  M.,  Nonlinear control of bioreactors with input multiplicities in dilution rate, Bioproc. Eng., 12 (1995).
[10] Kutranjek, Z., Principal component ANN for modeling and control of baker’s yeast production, J. Biotechnol., 65 (1998).
[11] Kasemets,  K.,  Drews,  M.,  Nisamedtinov,  I, Adamberg, K. and Paalme, T., Modification of A-stat for the characterization of microorganisms, J. Mirob. Methods, 55 (2003).
[12] Thierie, J., Modeling  threshold phenomena, meta-bolic pathways switches and signals in chemostat-cultivated cells: the Crabtree effect in saccharomyces cerevisiae , J. Theor. Biol., 226 (2004).
[13] Lotz, M.,  Fröhlich,  R., Matthes, R., Schügerl,  K. and Seekamp, M., Bakers’ yeast cultivation on by-products and wastes of potato and wheat starch production on a laboratory and pilt-plant scale, Process Biochem., 26 (1991).
[14] Serio,  M. D.,  Tesser,  R.  and  Santacesaria,  E.,  A kinetic and mass transfer model to simulate the growth in industrial bioreactors, Chem. Eng. J., 82 (2001).
[15] Pertev, C., Tuker, M. and Berber, R., Dynamic modeling, sensitivity analysis and parameter estimation of industrial yeast fermenters, Comput. Chem. Eng., 21, S739-S744 (1997).
[16] Dantigny, P., Modeling of the aerobic growth of saccharomyces cerevisiea on mixture of glucose and ethanol in continuous culture, J. Biotechnol., 43 (1995).
[17] Larsson, G., Pham, H. and Enfors, S.O., The pH-auxostat as a tool for studying microbial dynamics in continuous fermentation, Biotechnol. Bioeng. (1990).
[18] Helrich, K., Official methods of analysis, associa-tion of official analytical chemists (AOAC), 15th. Edition , AOAC Inc. (1990).
[19] Rehm, H.R. and Reed, G., , Measuring ; Modeling and Control, Biotechnology, 4, VCH Publ. (1991).
[20] Baily, J. and Ollis, D.F., “Biochemical Engineering Fundamentals”, second edition,   Mc. Graw Hill (1986).