Catalyzed Oxidation of Cyclohexene and Cyclooctene with First Row Transition etallophthalocyanines

Document Type: Research Note


Department of Chemistry, Shahid Beheshti University, P.O. Box 1983963113 Tehran, I.R. IRAN


First row transition metal complexes of phthalocyanine are employed as catalysts for the oxidation of cyclohexene and cyclooctene using iodosylbenzene and pentafluoroiodosyl benzene. The catalysis was performed in dichloromethane: methanol:water (80:18:2) solvent mixture.  The products of the catalysis for cyclohexene are epoxycyclohexane, 2-cyclohexene-1-ol and 2-cyclohexene-1-one whereas for cyclooctene it is specifically cyclooctene oxide.  For cyclohexene oxidation epoxide yield and selectivity is in the order of MnII > FeIII > FeII > CoII > CrIII > NiII > CuII , while for 2-cyclohexene-1-one production the ability of the catalysts are in the order of  NiII > CoII > CuII > CrIII > FeIII > FeII > MnII .


Main Subjects

[1] Ortiz  de  montellano, P.,  In “Cytochrome P-450: Structure, Mechanism and Biochemistry”; 2nd  Edition, Plenum Press, New York (1995).

[2] Lewis, F.V., In “Cytochrome P-450, Structure, Function and Mechanism”; Taylor and Francis, London (1996).

[3] Mclain, J., Lee, J. and Groves, J.T., In “Biomimetic Oxidations Catalyzed by Transition Metal Complexes”, B. Meunier, Imperial College Press, London  (2000).

[4] Groves, J.T. and Nemo, T.E., Epoxidation Reactions Catalyzed by Iron Porphyrins. Oxygen Transfer from Iodosylbenzene, J. Am. Chem. Soc., 105, 5786 (1983).

[5] Shilov, A.E. and Shteinman, A.A., Oxygen Atom Transfer into C-H Bond in Biological and Model Chemical Systems, Mechanistic Aspects, Acc.Chem. Res., 32 , 763 (1999).

[6] Traylor, T.G., In “Active Oxygen in Biochemistry”, Valentine, J.S., Foote, C.S., Greenberg, A., Liebman, J.E., Blackie Academic and Professional, Chapman and Hall, London (1995).

[7] Collman, J.P., Chien, A.S., Eberspacher, T.A., and Brauman, J.I., Multiple Active Oxidant in Cytochrome P-450 Model Oxidation, J. Am. Chem. Soc., 122, 11098 (2000).

[8] Mansuy, D., Cytochrome P-450 and Synthetic Models, Pure & Appl. Chem., 59, 759 (1987).

[9] Safari, N., and  Bahadoran, F., Cytochrome P-450 Model Reactions, A Kinetic Study of Epoxidaton of Alkenes by Iron Phthalocyanine, J. Mol. Cat. A, 171, 115 (2001).

[10] Geiger, D.K., Ferraudi, G., Madden, K., Granifo, J. and Rillema, D.P., Redox Reactivity of Transition-Metal Phthalo- cyanines: Ligand Radical Formation vs.   Metal Center Oxidation, J. Phys. Chem., 89, 3890 (1985).

[11] Pederson, C.J., Reversible Oxidation of  Phthalo-cyanines, J. Org. Chem., 22, 127 (1957).

[12] Banfi, S., Montanari, F., Quici, S., Barkonova, S.V., Kaliya, O.L., Kopranenkov, V.N., and Lukyanets, E.A., PorPhyrins and Azaporphyrines as Catalysts in Alkene Epoxidations with Peracetic Acid, Tetrahedron Lett., 36, 2317 (1995).

[13] Nappa, M.J. and Tolman, C.A., Steric and Electronic Control of  Iron Porphyrin Catalyzed Hydrocarbon Oxidations, Inorg. Chem., 24, 4711 (1985).

[14] Shaabani, A., Synthesis of Metallophthalocyanines under Solvent-free Conditions Using Microwave Irradiation., J. Chem. Res., 672 (1998).

[15] a) Pausacker, K. H., J. Chem. Soc., 107 (1953),
       b) Baumgarten, H.E. In “Organic Syntheses Collective”, Vol.5, John Wiley & sons, New York (1973).

[16] Schmeisser,  M.,  Dahmen,  K., and  Sartori,  P., Perfluoroacyloxy  Compounds   of  Positive   Iodine, Chem. Ber., 100, 1633 (1967). 

[17] Groves,  J. T.,  Nemo,  T. E. and  Myers, R. S., Hydroxylation and Epoxidation Catalyzed by Iron- porphin Complexes, Oxygen Transfer from Iodosylbenzenre, J. Am. Chem. Soc., 101, 1032 (1979).

[18] Fontcare, M. and Mansuy, D., Monooxygenase like Oxidations of Olefines and Alkanes Catalyzed by Manganes Porphyrins: Comparision of Systems Invovling either O2 and Ascorbate or Iodosylbenzene, Tetrahedron, 40, 4297 (1984).

[19] Groves, J.T. and Kruper, W.J.Jr., Preparation and Characterization of an Oxoporphinatochromium (V) Complex, J. Am. Chem. Soc., 101, 7613 (1979).

[20] Traylor, T. G., and Miksztal, A. R., Alkene Epoxi-dations Catalyzed by Iron(III), Manganese(III) and Chromium(III) porphyrins, Effects of Metal and Porphyrin Substituents on Selectivity and Regiochemistry of Epoxidation, J. Am. Chem. Soc., 111, 7443 (1989).     

[21] Groves, J. T., Avaria-Neisser,  G. E., Fish, K. M., Imachi, M. and Kuczkowski, R.L., Hydrogen- Deuterium Exchange During Propylene Epoxidation by Cytochrome P-450, J. Am. Chem. Soc., 108,  3837 (1986).