Changes in Enzyme Efficiency During Lipase-Catalyzed Hydrolysis of Canola Oil in a Supercritical Bioreactor

Document Type: Research Article


1 Department of Food Science & Engineering, Faculty of Agricultural Biosystem Engineering, University of Tehran, P.O. Box 31587-78659 Karaj, I.R. IRAN

2 Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, Alberta, T6G 2P5 CANADA


Enzyme efficiency was investigated in the lipase-catalyzed hydrolysis of canola oil in supercritical carbon dioxide (SCCO2). Immobilized lipase from Mucor miehie (Lipozyme IM) was used as the catalyst and the results showed that enzyme efficiency dropped at high pressures indicating a possible change in enzyme microstructure. Therefore, scanning electron microscopy (SEM) was used as a supplementary tool to investigate microstructural stability of the enzyme under supercritical conditions. SEM images of the treated enzymes did not demonstrate any apparent structural changes with a change in pressure (24.0 and 38.0 MPa), enzyme load of the reactor (1.0 and 5.0 g), CO2 flow rate (0.5 and 3.9 L/min) and the oil content (extracted from 3.0 and 15.0 g canola flakes) of SCCO2. However, a change at the molecular level is a possibility, which requires further investigation. 


Main Subjects

[1] Yu, Z. R., Rizvi, S. S. H. and Zollweg, J. A., Enzymatic esterification of fatty acid mixtures from milk fat and anhydrous milk fat with canola oil in supercritical carbon dioxide, Biotech. Prog., 8, 508 (1992).
[2] Klemann, L. P., Aji, K., Chrysam, M. M., D'amelia, R. P., Henderson, J. M., Huang, A. S., Otterburn, M. S. and Yarger, R. G., Random nature of triacylglycerols produced by the catalyzed interest-erification of short- and long-chain fatty acid triglycerides, J. Agric. Food Chem., 42, 442 (1994).
[3] Saito, S., Research activities on supercritical fluid science and technology in Japan - A review, J. Supercrit. Fluids, 8, 177 (1995).
[4] Rezaei, K. and Temelli, F., On-line extraction-reaction of canola oil using immobilized lipase in supercritical CO2, J. Supercrit. Fluids, 19, 263. (2001).
[5] Cao, X. and Ito, Y., Supercritical fluid extraction of grape seed oil and subsequent separation of free fatty acids by high-speed counter-current chromato-graphy, J. Chromat. A, 1021, 117 (2003).
[6] Nagesha, G. K., Manohar, B. and Sankar, K. U., Enzymatic esterification of free fatty acids of hydrolyzed soy deodorizer distillate in supercritical carbon dioxide, J. Supercrit. Fluids, 32, 137 (2004).
[7] Letourneau, J. J., Vigneau S., Gonus P. and Fages J., Micronized cocoa butter particles produced by a supercritical process, Chem. Eng. Proc., 44, 201 (2005).
[8] Rezaei, K. and Temelli, F. Lipase catalyzed hydrolysis of canola oil in supercritical CO2, J. Am. Oil Chem. Soc., 77, 903 (2000).
[9] Marty, A., Chulalaksananukul, W. and Condoret, J. S., Kinetics of lipase-catalyzed esterification in supercritical CO2, Biotech. Bioeng., 39, 273 (1992).
[10] Kamat, S., Critchley, G., Beckman, E. J. and Russell, A. J., Biocatalytic synthesis of acrylates in organic solvents and supercritical fluids . 3. Does carbon dioxide covalently modify enzymes?, Biotech. Bioeng., 46, 610 (1995).
[11] Kamat, S., Barrera, J., Beckman, E. J. and Russell, A. J., Biocatalytic synthesis of acrylates in organic solvents and supercritical fluids, I. Optimization of enzyme environment, Biotech. Bioeng., 40, 158 (1992).
[12] Lee,  H. S., Lee, W. G.  and Park, S. W., Starch hydrolysis using enzyme in supercritical carbon dioxide, Biotech. Techniq., 7, 267 (1993).
[13] Ikushima, Y., Saito, N., Arai, M. and Blanch, H. W., Activation of a lipase triggered by interactions with supercritical carbon dioxide in the near-critical region, J. Phys. Chem., 99, 8941 (1995).
[14] Randolph, T. W., Blanch, H. W. and Clark, D. S., “Biocatalysis in supercritical fluids. In Biocatalysis for Industry”, J. S. Dordick (Ed.), pp. 219-237 Plenum Press, New York. (1991).
[15] Vasudevan, P. T. and Weiland, R., H., Studies on the morphology of immobilized catalase, Chem. Eng. J., 55, B41 (1994).
[16] Yu, T., Liu, H. Deng, J. and Liu, Y., Characterization of regenerated silk fibroin membrane for immobilizing glucose oxidase and construction of a tetrathiafulvalene-mediating glucose sensor, J. Appl. Polym. Sci., 58, 973 (1995).
[17] Liu, Y., Liu, H., Qian, J., Deng, J. and Yu, T., Immo-bilization of glucose oxidase in the regenerated silk fibroin membrane, Characterization of the membrane structure and its application to an amperometric glucose sensor employing ferrocene as electron shuttle, J. Chem. Technol. Biotech., 64, 269 (1995).
[18] Liu, H., Zhang, X., Zhang, Z., Qi,  D., Fan,  Y.,  Liu, Y., Liu, S. and Yu, T., Characterization of composite membrane of poly (vinyl alcohol) and regenerated silk fibroin for immobilization of horseradish peroxidase and amperometric neckelocene-mediated sensor sensitive to hydrogen peroxide, J. Chem. Technol. Biotech.,67, 77 (1996).
[19] Verghese, M. M., Ramanathan, K., Ashraf, S. M. and Malhotra, B. D., Enhanced loading of glucose oxidase on polyaniline films based on anion exchange, J. Appl. Polym. Sci., 70, 1447 (1998).
[20] Miller, D. A., Blanch, H. W. and Prausnitz, J. M., Enzyme-catalyzed interesterification of triglycerides in supercritical carbon dioxide, Ind. Eng. Chem. Res., 30, 939 (1991).
[21] Balaban, M. O., Arreola, A. G., Marshall, M. and Cornell, J., Inactivation of pectinesterase in orange juice by supercritical carbon dioxide, J. Food Sci., 56, 743 (1991).
[22] Owusu-Yaw, J., Marshall, M. R., Koburger, J. A. and Wei, C. I., Low pH inactivation of pectin-esterase in single strength orange juice, J. Food Sci., 53, 504 (1988).
[23] Weder, J. K. P., Studies on proteins and amino acids exposed to supercritical carbon dioxide extraction conditions, Food Chem., 15, 175 (1984).
[24] Weder, J. K. P., Boker, M. V. and Hegarty, M. P., Effect of supercritical carbon dioxide on arginine, Food Chem., 44, 287 (1992).
[25] Nakamura,  K.,  Hoshino,  T.  and  Ariyama,  H., Adsorption of carbon dioxide on proteins in the supercritical region, Agric. Biol. Chem., 55, 2341 (1991).
[26] Ikushima, Y., Saito, N., Hatakeda, K. and Sato, O., Promotion of a lipase-catalyzed esterification in supercritical carbon dioxide in near-critical region, Chem. Eng. Sci., 51, 2817 (1996).
[27] Ishikawa, H., Shimoda, M., Kawano, T. and Osajima, Y., Inactivation of enzymes in an aqueous solution by micro-bubbles of supercritical carbon dioxide, Biosci. Biotech. Biochem., 59, 628 (1995).
[28] Lozano, P., Avellaneda, A., Pascual, R. and Iborra, J. L., Stability of immobilized alpha-chymotrypsin in supercritical carbon dioxide, Biotech. Lett., 18, 1345 (1996).
[29] Vermuë, M. H., Tramper, J., de Jong, J. P. L. and Oostrom, W. H. M., Enzymic transesterification in near-critical carbon dioxide. Effect of pressure, Hildebrand solubility parameter and water content, Enz. Microb. Technol., 14, 649 (1992).