Lennard-Jones Energy Parameter for Pure Fluids from Scaled Particle Theory

Document Type: Research Article

Authors

Chemical Engineering Department, Amirkabir University of Technology, P.O. Box 15875-4413 Tehran, I.R. IRAN

Abstract

By considering the fact that the surface tension of a real fluid arises from a combination of both repulsive and attractive forces between molecules, a new expression for the interfacial tension has been derived from scaled particle theory (SPT)  based on the work of cavity formation and the interaction energy between molecules. At the critical temperature, the interfacial tension between coexisting liquid and vapour phases vanishes and the intermolecular attractive forces must exactly counterbalance the repulsive forces associated with cavity formation. The effective Lennard-Jones energy parameter has been calculated by using a simple equation derived from SPT  for a range of pure fluids including noble gases, diatomic and triatomic gases, short and medium length hydrocarbons, aromatic compounds, oxygen containing compounds. The evaluated Lennard-Jones energy parameters and Reiss's SPT theory were used to calculate the surface tension of pure compounds near critical temperature and were compared with the experimental data. The results indicated that the developed SPT in this work calculates the surface tensions much closer to the experimental data compared with those Reiss's SPT theory .

Keywords

Main Subjects


[1] Flynn, L. W. and Thodos, G., AIChE J., 8, 362 (1962).

[2] Mason, E. A., Monchick, L., J. Chem. Phys., 35, 167 (1961).

[3] Kihara, T., Adv. Chem. Phys., 1, 26 (1958).

[4] Cox, J. D. and Andon, R. J. L., Trans. Faraday Soc., 54, 1622 (1958).

[5] Douslin, D. R., Harrison, R. H., Moore, R. T. and McCullough, J. P., J. Chem. Phys., 35, 1357 (1961).

[6] Pardo, J., Lopez, M. C., Santafe, J., Royo, F. M. and Urieta, J. S., Fluid Phase Equilib., 109, 29 (1995).

[7] Pardo, J., Lopez, M. C., Santafe, J., Royo, F. M. and Urieta, J. S., Fluid Phase Equilib., 119, 165 (1996).

[8] Wilhelm, E. and Battino, R., J. Chem. Thermodyn., 3, 379 (1971). 

[9] Wilhelm, E. and Battino, R., J. Chem. Thermodyn., 3, 761 (1971).

[10] Deligny, C. L. and Vanderveen N. G., Chem. Eng. Sci., 27, 391 (1972).

[11] Battino, R., Evans, F. D., Danforth, W. F. and Wilhelm, E., J. Chem. Thermodyn., 3, 743 (1971).

[12] Gibanel, F., Lopez, M. C., Royo, F.M., Pardo, J. and Urieta, J. S., Fluid Phase Equilib., 87, 285 (1993).

[13] Gibanel, F., Lopez, M. C., Royo, F. M., Rodriguez, V. and Urieta, J. S., J. Solut. Chem., 23, 1247(1994).

[14] Gibanel, F., Lopez, M. C., Royo, F. M., Santafe, J. and Urieta, J. S., J. Solut. Chem., 22, 211 (1993).

[15] Wilcock, R. J., Battino, R., Danforth, W. F. and Wilhelm, E., J. Chem. Thermodyn., 10, 817 (1978).

[16] Pardo, J., Mainar, A.M., Lopez, M. C., Royo, F. and Urieta, J. S., Fluid Phase Equilib., 155, 127 (1999).

[17] Pardo, J., Mayoral, J. A., Lopez, M. C., Royo, F. and Urieta, J. S., Fluid Phase Equilib., 134, 133 (1997).

[18] Reiss, H., J. Phys. Chem., 96, 4736 (1992).

[19] Mayer, S. W., J. Phys. Chem., 67, 2160 (1963).

[20] Nandi, N. and Basumallick, I. N., Z. Phys. Chem., 173, 179 (1991).

[21] Lei, Z., Zhou, R. and Duan, Z., FluidPhase Equilib., 200, 187 (2002).

[22] Pierotti, R. A., Chem. Rev., 76, 717 (1976).

[23] Nandi, N. and Basumallick, I. N., J. Phys. Chem., 94, 2537 (1990).

[24] Nandi, N. and Basumallick, I. N., J. Phys. Chem., 97, 3900 (1993).

[25] Nandi, N., THEOCHEM, 332, 311 (1995).

[26] Baeyens, B. and Verschelde, H., Z. Phys. B: Condens. Matter, 102, 255 (1997).

[27] Marongiu, B., Porcedda, S., Lepori, L. and Matteoli, E., Fluid Phase Equilib., 108, 167 (1995).

[28] Zielenkiewicz, W., Zielenkiewicz, P. and Lapshov, P. V., J. Thermal Anal., 45, 775 (1995).

[29] Reiss, H., Frisch, H.L. and Lebowitz, J. L., J. Chem. Phys., 31, 369 (1959).

[30] Reiss, H., Frisch, H. L., Helfand, E. and Lebowitz, J. L., J. Chem. Phys., 32, 119 (1960).

[31] Reiss, H. and Mayer, S. W., J. Chem. Phys., 34, 2001 (1961).

[32] Lebowitz, J. L., Helfand, E. , Praestga E.,  J. Chem. Phys., 43, 774 (1965).

[33] Hirschfelder, J. O., Curtis, C. F. and Bird, R. B., “Molecular Theory of Gases and Liquids”, 2nd ed., John Wiley & Sons Inc., New York, (1964).

[34] Hildebrand, J. H., Scott, R. L. “The Solubility of Nonelectrolytes”, 3rd ed., Dover Publications, New York (1964).

[35] Bondi, A., “Physical properties of Molecular Crystals, Liquids and Glasses”, 1st ed., John Wiley & Sons Inc., New York, London, Sydney (1964).

[36] Satherley, J. and Schiffrin, D. J., J. Chem. Phys., 97, 2168 (1992).

[37] Frisch, H. L. and Nielaba, P., J. Chem. Phys., 105, 7238 (1996).

[38] Kobatake, Y. and Alder, B. J., J. Phys. Chem., 66, 645 (1962).

[39] Schulze, G. and Prausnitz, J. M., Ind. Eng. Chem. Fundam., 20, 175 (1981).

[40] Pierotti, R. A., J. Phys. Chem., 69, 281(1965).

[41] Prini, R. F., Crovetto, R., Japas, M. L., Laria, D., Acc. Chem. Res., 18, 207 (1985).

[42] Millat, J., Dymond, J. H. and Nieto de Castro Laria, C. A, “Transport Properties of Fluids: Their Correlation, Prediction and Estimation”, 2nd ed., CambridgeUniversity Press, Cambridge (1996).

[43] Abraham, M. H. and Nasehazadeh, A., J. Chem. Soc., Faraday Trans. I, 77, 321 (1981).

[44] Salsburg, Z. W. and Kirkwood, J. G., J. Chem. Phys., 21, 2169 (1953).

[45] Gussoni, M., Rui, M. and Zerb, G., J. Mol. Struc., 447, 163 (1998).

[46] McClellan, A. L., “Tables of Experimental Dipole Moments”, Freeman, W.H. and Company: San Francisco  (1963).

[47] Desty, D. H. and Swanton, W. T., J. Phys. Chem., 65, 766 (1961).

[48] Nurok, D., Kleyle, R. M., Hajdu, P., Ellsworth, B., Myers, S. S., Brogan, T., Lipkowitz, K. B., Glen, R. C., Anal. Chem., 67, 4423 (1995).

[49] Wilhelm, E. and Battino, R., J. Chem. Phys., 55, 4012 (1971).

[50] Schaper, K. J., Kunz, B. and Raevsky, O. A., 22, 943 (2003).

[51] Kagawa, H., Ichimura, A., Kamka, N. A. and Mori, K., J. Mol. Struct. (THEOCHEM), 546, 127 (2001).

[52] Reid, R.C., Prausnitz, J.M., Poling, B.E., The Properties of Gases and Liquids ”, 4th ed., McGraw Hill, New York, London (1987).

[53] Beaton, C. F., Hewitt, G. F. “Physical Property Data for the Design Engineer”, 1st ed., Hemisphere Publishing Co., New York, Washington, Philadelphia, London (1989).