Solubility Prediction of High Molecular Weight n-Paraffins in Supercritical Carbon Dioxide

Document Type: Research Article


1 Department of Chemical Engineering, Amirkabir University of Technology, Tehran, I.R. IRAN

2 Thermodynamic Research Lab., Kashan University, Kashan, I.R. IRAN


Solubility of high molecular weight n-paraffins in supercritical carbon dioxide has been a matter of interest to many researchers. However, not sufficient solubility experimental data are available although the methods by which the experimental data are obtained have many varieties. Utilizing cubic equations of state is an effective method for solubility prediction of n-paraffins in supercritical fluids. In this work, five cubic equations of state (EOS) are employed to predict the solubility of six high molecular weight n-paraffins: n-tetracosane, n-pentacosane, n-hexacosane, n-heptacosane, n-octacosane and n-nonacosane, in supercritical carbon dioxide. The EOSs used are van der Waals, Redlich-Kwong and MohsenNia-Modarress-Mansoori (MMM) as two-parameter EOSs and Soave and Peng-Robinson as three-parameter EOSs. The results show that the two-parameter MMM EOS is more accurate in solubility prediction than the other EOSs.


Main Subjects

[1] Higashi, H., Iwai, Y., Arai, Y., Chemical Engineering Science, 56, 3027 (2001).
[2] Bristow,  S., Shekunov, B. Y., York, P., Industrial Engineering and Chemical Research, 40, 1732 (2001).
[3] Hartono, R., Mansoori, G. A., Suwono, A., Chemical Engineering Science, 56, 6949 (2001).
[4] Yau, J.S., Tsai, F.N., Journal of Chemical and  Engineering Data, 38, 171 (1993).
[5] Yun, S.L.J., Liong, K.K., Gurdial, G.S., Foster, N.R., Industrial Engineering and Chemical Research, 30,  2476 (1991).
[6] Liu, J., Han, B., Wang, Z., Zhang, J., Li, G., Yang,G., Langmuir, 18, 3086 (2002).
[7] Yokota, K., Hanakata, Y., Fujimoto, K., Chemical Engineering Science, 45, 2743 (1990).
[8] Reverchon,  E.,  Russo, P., Stassi, A., Journal of  Chemical and Engineering Data, 38, 458 (1993).
[9] Kwak, T.Y., Mansoori, G.A., Chemical Engineering  Science, 41, 1303 (1986).
[10] Walas, S. M.,  "Phase  Equilibria  in Chemical Engineering, Butterworth Publishers",(1985).
[11] Van der  Waals, J. D., Ph. D. Thesis, University of  Leiden,(1883).
[12] Redlich, O., Kowng, J.N.S., Chemical Review, 44, 233 (1949).
[13] Mohsen-Nia, M., Modarress, H., Mansoori, G.A., Chemical Engineering and Communication, 131,15 (1995).
[14] Peng, D.Y., Robinson, D.B, Industrial Engineering  and Chemical Fundamental, 15, 59 (1976).
[15] Soave, G., Chemical Engineering Science, 27, 1197 (1972).
[16] Mohsen-Nia, M., Modarress, H., Mansoori, G.A., Fluid Phase Equilibria, 206, 27 (2003).
[17] Prausnitz,  J. M., “Molecular Thermodynamics of  Fluid-Phase Equilibria”, Second Edition, Prentice- Hall Inc.,(1986).
[18] Furuya,  T., Teja, A. S., Journal of Supercritical Fluids, 29, 231 (2004).