Optimization Process for the Synthesis of Polyol-Oleates from Malaysian Unsaturated Palm Fatty Acid Distillate

Document Type : Research Article

Authors

Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, MALAYSIA

Abstract

Palm Fatty Acid Distillate (PFAD) is a cheap and valuable by-product of edible oil processing industries. Palm fatty acid distillates are generally used in the soap industry, animal feed industry, and as raw materials for oleochemical industries, in the manufacture of candles, cosmetics, and toiletries. Other applications include their use as food emulsifiers, an aid in rubber processing, in the Flavors and fragrance industries well as in pharmaceutical products. Vitamin E has been extracted commercially from PFAD for encapsulation. This study was carried out to determine the optimization conditions for the esterification of Malaysian PFAD with high-degree polyhydric alcohols (TMP, Di-TMP, PE, and Di-PE) in the presence of sulphuric acid as a catalyst based on four reaction parameters; reaction temperature (°C), reaction time (h), the effect of different alcohols, and molar ratios. The results show that a high conversion of 89% USFA-TMP ester was observed at 150°C, the optimal time for the esterification at 6 h to obtain 91% tri-ester yield, TMP ester produced the highest yield percentage (91%) and the optimum molar ratios were 3.5:1 (USFA: TMP), 4.5:1 (USFA-Di-TMP and USFA: PE) and 6.5:1 (USFA: Di-PE).

Keywords

Main Subjects


[1] Salih N., Salimon J., A Review on Eco-Friendly Green Biolubricants from Renewable and Sustainable Plant Oil Sources, Biointerface Res. Appl. Chem., 11(5): 13303-13327 (2021).
[2] Sim B.I., Khor Y.P., Lai O.M., Yeoh C.B., Wang Y., Liu Y., Nehdi I.A., Tan, C.P., Mitigation of 3-MCPD Esters and Glycidyl Esters During the Physical Refining Process of Palm Oil by Micro and Macro Laboratory Scale Refining, Food Chem., 328: 127147 (2020).
[3] Ishak F.A., Jamil M.H., Abd Razak A.S., Zamani N.H.A., Ab Hamid M.R., Development of Animal Feed from Waste to Wealth using Napier Grass and Palm Acid Oil (PAO) from Palm Oil Mill Effluent (POME), Mater. Today: Proceeding, 19(4): 1618-1627 (2019).
[4] Ahmed W.A., Salih N., Salimon J., Lubricity, Tribological and Rheological Properties of Green Ester Oil Prepared from Bio-Based Azelaic Acid, Asian J. Chem., 33(6): 1363-1369 (2021).
[5] Samidin S., Salih N., Salimon J., Synthesis and Characterization of Trimethylolpropane Based Esters as Green Biolubricant Basestock, Biointerface Res. Appl. Chem., 11(5): 13638-13651 (2021).
[6] Nor N.M., Salih N., Salimon J., Optimization of the Ring Opening of Epoxidized Palm Oil Using D-Optimal Design, Asian J. Chem., 33(1): 67-75 (2021).
[7] Japir A.A., Salih N., Salimon J., Synthesis and Characterization of Biodegradable Palm Palmitic Acid Based Bioplastic, Turk. J. Chem., 45: 585-599 (2021).
[8] Bahadi M., Salih N., Salimon J., Synthesis and Characterization of Green Biodegradable Palm Oleic Acid Based Polyester, Biointerface Res. Appl. Chem., 11(6): 14359-14371 (2021).
[9] Jumaah M.A., Yusoff M.F.M., Salimon J., Physicochemical Properties and Analysis of Malaysian Palm Fatty Acid Distilled, AIP Conf. Proceed., 1940: 020092 (2018).
[11] Bahadi M.A., Japir A.W., Salih N., Salimon J., Free Fatty Acids Separation from Malaysian High Free Fatty Acid Crude Palm Oil using Molecular Distillation, Malaysian J. Anal. Sci., 20(5): 1042-1051(2016).
[12] Salih N., Salimon J., A Review on New Trends, Challenges and Prospects of Ecofriendly Friendly Green Food-Grade Biolubricants, Biointerface Res. Appl. Chem., 12(1): 1185-1207 (2022). 
[13] Ping B.T.Y., Yusof M., Characteristics and Properties of Fatty Acid Distillates from Palm Oil, Oil Palm Bull., 59: 5-11(2009).
[14] Top A.G.M., Production and Utilization of Palm Fatty Acid Distillate (PFAD), Lipid Technol., 22(1): 11-13 (2010).
[15] Widodo S., Khoiruddin, K., Ariono D., Subagjo S., Wenten I.G., Re-refining of Waste Engine Oil Using Ultrafiltration Membrane, J. Environ. Chem. Eng., 8(3): 103789 (2020).
[16] Baharudin K.B., Taufiq-Yap Y.H., Hunns J., Isaacs M., Wilson K., Derawi D., Mesoporous NiO/Al-SBA-15 Catalysts for Solvent-Free Deoxygenation of Palm Fatty Acid Distillate, Micropor. Mesopor. Mat., 276: 13-22 (2019).
[17] Jumaah M.A., Salih N., Salimon J., D-Optimal Design Optimization for Esterification of Palm Fatty Acids Distillate with Polyhydric Alcohols for Biolubricants Production, Iran. J. Chem. Chem. Eng. (IJCCE), 41(5):1657-1672 (2022).
        DOI: 10.30492/IJCCE.2021.521586.4481
[18] Chongkhong S., Tongurai C., Chetpattananondh P., Continuous Esterification for Biodiesel Production from Palm Fatty Acid Distillate Using Economical Process, Renew. Energy, 34(4): 1059-1063 (2009).
[20] Ferdous Alam A.S.A., Er A.C., Begum H., Malaysian Oil Palm Industry: Prospect and Problem, J. Food Agric. Environ., 13(2): 143-148 (2015).
[22] Jumaah M.A., Yusoff M.F.M., Salimon J., Bahadi M., Separation of Saturated and Unsaturated Fatty Acids of Palm Fatty Acid Distilled via Low-Temperature Methanol Crystallization, Malaysian J. Chem., 21(2): 8-16 (2019).
[23] Sarmah N., Revathi D., Sheelu G., Yamuna Rani K., Sridhar S., Mehtab V., Sumana C., Recent Advances on Sources and Industrial Applications of Lipases, Biotechnol. Prog., 34(1): 5-28 (2018).
[24] Reker D., Hoyt E.A., Bernardes G. J.L., Rodrigues T., Adaptive Optimization of Chemical Reactions with Minimal Experimental Information, Cell Rep. Phys. Sci., 1(11): 100247 (2020).
[25] Namazizadeh M., Gevari M.T., Mojaddam M., Vajdi M., Optimization of the Splitter Blade Configuration and Geometry of a Centrifugal Pump Impeller Using Design of Experiment, J. Appl. Fluid Mech., 13(1): 89-101 (2020).
[26] Curtis M.J., Alexander S., Cirino G., Docherty J.R., George C.H., Giembycz M.A., Hoyer D., Insel P.A., Izzo A.A., Ji Y., MacEwan, D.J., Sobey G.S., Stanford S.C., Teixeira M.M., Wonnacott S., Ahluwalia A., Experimental Design and Analysis and Their Reporting II: Updated and Simplified Guidance for Authors and Peer Reviewers, British J. Pharmacol., 175(7): 987-993 (2018).
[27] Meramo-Hurtado S.I., González-Delgado Á.D., Process Synthesis, Analysis, and Optimization Methodologies Toward Chemical Process Sustainability, Ind. Eng. Chem. Res., 60(11): 4193-4217 (2021).
[29] Dias A.N., Cerqueira M.B.R., De Moura R.R., Kurz M.H.S., Clementin R.M., D’Oca M.G.M., Primel E.G., Optimization of a Method for the Simultaneous Determination of Glycerides, Free and Total Glycerol in Biodiesel Ethyl Esters from Castor Oil Using Gas Chromatography, Fuel, 94: 178-183 (2012).
[31] Romero A., Santos A., Escrig D., Simón E., Comparative Dehydrogenation of Cyclohexanol to Cyclohexanone with Commercial Copper Catalysts: Catalytic Activity and Impurities Formed,
Appl. Catal. A: Gen., 392(1-2): 19-27 (2011).
[32] Nor N.M., Salih N., Salimon J., Chemically Modified Jatropha Curcas Oil for Biolubricant Applications, Hem. Ind., 75(2): 117-128 (2021).