Synthesis of Aureobasidin B Analogs and Their Antifungal Activity Against Candida albicans

Document Type : Research Article

Authors

1 Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, INDONESIA

2 Central Laboratory, Universitas Padjadjaran, Jatinangor, West Java, INDONESIA

Abstract

Aureobasidins (Abs) are a class of cyclodepsipeptides with interesting antifungal properties but they are difficult to synthesize. This study aimed to synthesize analogs of aureobasidin B (AbB) by a combination of solid- and solution-phase synthesis and to investigate their antifungal properties. The linear peptides were synthesized on 2-chlorotrityl chloride resin with Fmoc strategy and a range of coupling reagents including HATU/HOAt, HBTU/HOBt, and BTC/sym-collidine. The cyclization step was undertaken in the solution phase. Four cyclic nonapeptides (NP1-NP4) and ten cyclic heptapeptides (HP1-HP2, HP4-HP11) were successfully synthesized and characterized. The analogs NP1, NP4, HP1, and HP2 demonstrated moderate antifungal activity against Candida albicans

Keywords

Main Subjects


[1] Takesako K., Ikai K., Haruna F., Endo M., Shimanaka K., Sono E., Nakamura T., Kato I., Yamaguchi H., Aureobasidins, New Antifungal Antibiotics Taxonomy, Fermentation, Isolation, and Properties, J. Antibiot., 44(9): 919-924 (1991).
[2] Takesako K., Mizutani S., Sakakibara H., Endo M., Yoshikawa Y., Masuda T., Sono-Koyama E., Kato I., Precursor Directed Biosynthesis of Aureobasidins, J. Antibiot., 49(7): 676-681 (1996).
[3] Awazu N., Ikai K., Yamamoto J., Nishimura K., Mizutani S., Takesako K., Kato I., Structures and Antifungal Activities of New Aureobasidins, J. Antibiot., 48(6): 525-527 (1995).
[4] Yoshikawa Y., Ikai K., Umeda Y., Ogawa A., Takesako K., Kato I., Naganawa H., Isolation, Structures, and Antifungal Activities of New Aureobasidins, J. Antibiot., 46(9): 1347-1354 (1993).
[5] Ikai K., Takesako K., Shiomi K., Moriguchi M., Umeda Y., Yamamoto J., Kato I., Naganawa H., Structure of Aureobasidin A, J. Antibiot., 44(9): 925-933 (1991).
[6] Ikai K., Shiomi K., Takesako K., Mizutani S., Yamamoto J., Ogawa Y., Ueno M., Kato I., Structures of Aureobasidins B to R, J. Antibiot., 44(11): 1187-1198 (1991).
[7] Ikai K., Shiomi K., Takesako K., Kato I., Naganawa H NMR Studies of Aureobasidins a and E, J. Antibiot., 44(11): 1199-1207 (1991).
[8] Turner W.W., Rodriguez M.J., Recent Advances in the Medicinal Chemistry of Antifungal Agents, Curr. Pharm. Des., 2(2): 209-224 (1996).
[9] Takesako K., Kuroda H., Inoue T., Haruna F., Yoshikawa Y., Kato I., Uchida K., Hiratani T., Yamaguchi H., Biological Properties of Aureobasidin A, A Cyclic Depsipeptide Antifungal Antibiotic, J. Antibiot., 46(9): 1414-1420 (1993).
[10] Droby S., Wisniewski M., Teixidó N., Spadaro D.,  Jijakli, M.H., Biocontrol of Postharvest Diseases with Antagonistic Microorganisms, "Postharvest Pathology of Fresh Horticultural Produce", CRC Press:463-498 (2019).
[11] Iqbal M., Jamshaid M., Zahid M.A., Andreasson E., Vetukuri R.R., Stenberg J.A., Biological Control of Strawberry Crown Rot, Root Rot and Grey Mould by the Beneficial Fungus Aureobasidium Pullulans, BioControl, 66(4): 535-545 (2021).
[12] Kurome T., Inami K., Inoue T., Ikai K., Takesako K., Kato I., Shiba T., Total Synthesis of an Antifungal Cyclic Depsipeptide Aureobasidin A, Tetrahedron, 52(11): 4327-4346 (1996).
[13] Jao E., Cooper A.B., Rane D.F., Saksena A.K., Desai J., Wang J., Girijavallabhan V.M., Ganguly A.K., Total Synthesis of the Antifungal Cyclic Depsipeptides Sch 57697 and Aureobasidin A, Tetrahedron Lett., 37(32): 5661-5664 (1996).
[15] Maharani R., Brownlee R. T., Hughes A. B., Abbott B. M., A Total Synthesis of A Highly N-Methylated Cyclodepsipeptide [2S,3S-Hmp]-Aureobasidin L using Solid-Phase Methods, Tetrahedron, 70(14): 2351-2358 (2014).
[16] Rahim A., Hidayat A., Nurlelasari N., Harneti D., Supratman U., Maharani R., A Total Synthesis of Cyclodepsipeptide [Leu]6-Aureobasidin K Using Combination of Solid-and Solution-Phase, Curr. Chem. Lett., 9(2): 97-104 (2020).
[17] Asif M., Mohd I., Synthetic Methods and Pharmacological Potential of some Cinnamic Acid Analogues Particularly Agai nst ConvulsionsProgress in Chemical and Biochemical Research2(4): 192-210 (2019).
[18] Sharma G., Sharma S., Synthetic Impatienol Analogues as Potential Cyclooxygenase-2 Inhibitors: A Preliminary Study, Journal of Applied Organometallic Chemistry, 1: 66 (2021).
[19] Wuts P.G., Simons L.J., Metzger B.P., Sterling R.C., Slightom J.L., Elhammer A.P., Generation of Broad-Spectrum Antifungal Drug Candidates from the Natural Product Compound Aureobasidin A, ACS Med. Chem. Lett., 6(6): 645-649 (2015).
[20] Takesako K., Mizutani S., Sakakibara H., Endo M., Yoshikawa Y., Masuda T., Sono-Koyama E., Kato I., Precursor Directed Biosynthesis of Aureobasidins, J. Antibiot., 49(7): 676-681 (1996).
[21] Ishida T., In Y., Fujikawa A., Urata H., Inoue M., Ikai K., Takesako K., Kato I., Conformational Feature of Aureobasidin E, a New Type of Potent Antifungal Antibiotic, J. Chem. Soc. Chem. Commun., 17: 1231-1233 (1992).
[23] Kaur H., Heapy A.M., Kowalczyk R., Amso Z., Watson M., Cornish J., Brimble M.A., Synthesis and Biological Evaluation of the Osteoblast Proliferating Cyclic Peptides Dianthins G and H, Tetrahedron, 70(42): 7788-7794 (2014).
[24] Fischer P.M., Retson K.V., Tyler M.I., Howden M.E., Solid‐Phase Peptide Synthesis without Side‐Chain Hydroxyl Protection of Threonine, Chem. Biol. Drug. Des., 38(5): 491-493 (1991).
[25] Perrin D.D., Armarego W.L.F., "Purification of Laboratory Chemicals", Butterworth-Heinemann, Oxpord, Boston (1997).
[26] Hayes B.M., Bleackley M.R., Wiltshire J.L., Anderson M.A., Traven A., van der Weerden N.L., Identification and Mechanism of Action of the Plant Defensin Nad1 as a New Member of the Antifungal Drug Arsenal against Candida Albicans, Antimicrob. Agents Chemother., 57(8): 3667-3675 (2013).