Modeling and Simulation of Thin Film InP/GaAs Dual-Junction Solar Cells

Document Type : Research Article

Authors

1 Department of Physics, OP Jindal University, Raigarh, Chhattisgarh, INDIA

2 Department of Pure & Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, INDIA

3 School of Sciences, Malla Reddy University, Dulapally, Hyderabad, Telangana, INDIA

4 Department of Chemistry, Faculty of Science, University of Allahabad, Prayagraj, INDIA

5 Department of Humanities, Social Sciences and Management, National Institute of Technology, Jamshedpur, INDIA

Abstract

We report the modeling and simulation results of thin film InP/GaAs dual-junction solar cell devices. The photovoltaic devices of varying device thickness in a range of 1-5 µm were modeled and optimized by modulating hole and electron concentrations in p-and n-doped active layers, respectively, and the thickness of the n-and p-regions in the devices. Our findings show that, with an increase in the thickness of active layers, the efficiency of solar cells increases which resulted in efficiency values in a range of 31.8%-36.4% under 1 sun of AM1.5G at 300 K. Furthermore, the optimized solar cells were further investigated under different working temperatures, black body temperatures, and solar spectra. For the working temperature range of 300 K-373 K, the efficiency of the device degraded with the increase in temperature.
In the black body temperature range of 2000-8000 K, the device exhibited an enhancing trend of efficiency when temperature increased and the highest efficiency of 31.9% was achieved at 6500 K. Due to their lightweight, low cost with much thinner device structure, and higher energy conversion efficiency, the thin film solar cells demonstrated here have advantages over conventional Si or other semiconductors-based solar cells for applications in photovoltaic, thermal photovoltaic, and space power.

Keywords

Main Subjects


[1] Panwar N., Kaushik S., Kothari S, Role of Renewable Energy Sources in Environmental Protection: A Review, Renew. Sust. Energy Rev.15(3): 1513-24 (2011).
[3] Mahmood A.,  Triphenylamine Based dyes for Dye Sensitized Solar Cells: A ReviewSol. Energy123: 127-44 (2016).
[4] Geisz J.F., France R.M., Schulte K.L., Steiner M.A., Norman A.G., Guthrey H.L., et al, Six-Junction III–V Solar Cells with 47.1% Conversion Efficiency Under 143 Suns Concentration, Nat.  Energy, 5(4): 326-35 (2020).
[5] Mahmood A., Recent Research Progress on Quasi-Solid-State Electrolytes for Dye-Sensitized Solar Cells, Journal of Energy Chemistry, 24(6): 686-692 (2015).
[6] Mahmood A., et al., Recent Progress in Porphyrin-Based Materials for Organic Solar Cells, Journal of Materials Chemistry A, 6(35): 16769-16797 (2018).
[7] Benabbas S., et al., Optimization of Chalcogenide CdTe, CZTS and CZTSe Solar Cells Performances Using Cd1-xZnxS Buffer Layer, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 41(4): 1360-1369 (2022).
[8] Munir  S., et al., Computational Investigations of a Novel Charge Transfer Complex for Potential Application in Dye-Sensitized Solar Cells, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 39(6): 19-27 (2020).
[9] Dimroth F.,  High‐Efficiency Solar Cells from III‐V Compound Semiconductors,  Phys. Status Solidi C, 3(3): 373-9 (2006).
[10] Lammasniemi J., Rakennus K., Effects of Annealing on Performance of InP Solar Cells on GaAs Substrates, Sol. Energy Mater. Sol. cells, 30(4): 301-7 (1993).
[11] Yamaguchi M., Takamoto T., Araki K., Ekins-Daukes N., Multi-Junction III–V Solar Cells: Current Status and Future Potential, Sol. Energy, 79(1): 78-85 (2005).
[12] Philipps S.P., Dimroth F., Bett A.W.,  High-Efficiency III–V Multijunction Solar Cells,  McEvoy's Handbook of Photovoltaics: Elsevier, 439-72 (2018).
[13] Emziane M., (Editor), “Tandem Solar Cells Involving III-V and IV Semiconductor Junctions”, 2010 35th IEEE Photovoltaic Specialists Conference; IEEE (2010).
[14] Saif O., Abouelatta M., Shaker A., Elsaid M., editors, “On the Optimization of InGaP/GaAs/InGaAs Triple-Junction Solar Cell”,  IOP Conference Series: Mater. Sci. Eng., IOP Publishing (2018).
[15] Yang W.-X., Dai P., Ji L., Tan M., Wu Y.-Y., Uchida S., et al.,  Investigation of Room-Temperature Wafer Bonded GaInP/GaAs/InGaAsP Triple-Junction Solar CellsAppl. Surf. Sci., 389: 673-8 (2016).
[16] Mathews I., King P.J., Stafford F., Frizzell R.,  Performance of III–V Solar Cells as Indoor Light Energy Harvesters, IEEE J. Photovolt., 6(1): 230-5 (2015).
[17] Cariou R., Benick J., Feldmann F., Höhn O., Hauser H., Beutel P., et al., III–V-On-Silicon Solar Cells Reaching 33% Photoconversion Efficiency in Two-Terminal Configuration, Nat. Energy, 3(4): 326-33 (2018).
[18] Chen Y., Jia B., Guan X., Han L., Wu L., Guan P., et al.,  Design and Analysis of III-V Two-Dimensional van der Waals Heterostructures for Ultra-Thin Solar Cells, Appl. Surf. Sci., 586: 152799 (2022).
[19] Andreani L.C., Bozzola A., Kowalczewski P., Liscidini M., Redorici L.,  Silicon Solar Cells: Toward the Efficiency Limits, Adv. Phys.: X, 4(1): 1548305 (2019).
[20] Sun G, Chang F, Soref R., High Efficiency Thin-Film Crystalline Si/Ge Tandem Solar Cell, Opt. Express, 18(4): 3746-53 (2010).
[21] Brozel M., Stillman G., editors, Properties fo Gallium Arsenides: Institution of Electrical Engineers, (1996).
[22] Shockley W., Queisser H.J., Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells, J. Appl. Phys., 32(3): 510-9 (1961).
[24] Yamaguchi M., Ando K., Mechanism for Radiation Resistance of InP Solar CellsJ. Appl. Phys. 63(11): 5555-62 (1988).
[26] Rover D., Basore P., Thorson G., editors,  “Solar Cell Modeling on Personal Computers”,  IEEE Photovoltaic Specialists Conference 18 (1985).
[27] Amin M., Foisal A., Das N., (Editors), “Design of a Thin Film Double Junction Photovoltaic Cell and Performance Analysis by Software Simulation”, IEEE Electrical Power & Energy Conference (EPEC), IEEE (2009).
[28] Emziane M., Nicholas R.,  Double-Junction Three-Terminal Photovoltaic Devices: A Modeling ApproachJ. Appl. Phys., 102(7): 074508 (2007).
[29] Haas A.W., Wilcox J.R., Gray J.L., Schwartz R.J., Design of a GaInP/GaAs Tandem Solar Cell for Maximum Daily, Monthly, and Yearly Energy OutputJ. Photonics Energy, 1(1): 018001 (2011).
[30] Bobela D.C., Gedvilas L., Woodhouse M., Horowitz K.A., Basore P.A.,  Economic Competitiveness of III–V on Silicon Tandem One‐Sun Photovoltaic Solar Modules in Favorable Future ScenariosProgress in Photovoltaics: Research and Applications25(1): 41-8 (2017).
[31] Alshkeili S., Emziane M., Design of Si/Ge Dual Junction Solar Cell Devices, Energy Procedia, 42:698-707 (2013).
[32] Yamaguchi M., Lee K.-H., Araki K., Kojima N., A Review of Recent Progress in Heterogeneous Silicon Tandem Solar CellsJ. Phys. D: Appl. Phys., 51(13):133002 (2018).
[33] Schygulla P., Müller R., Lackner D., Höhn O., Hauser H., Bläsi B., et al, Two‐Terminal III–V//Si Triple‐Junction Solar Cell With Power Conversion Efficiency of 35.9% at AM1. 5GProgress in Photovoltaics: Research and Applications, 30(8): 869-79 (2022).
[34] Moon S., Kim K., Kim Y., Heo J., Lee J., Highly Efficient Single-Junction GaAs Thin-Film Solar Cell on Flexible Substrate, Sci.  Rep., 6(1):1-6 (2016).
[35] Liu Y., Sun Y., Rockett A., A New Simulation Software of Solar Cells—wxAMPS, Solar Energy Materials and Solar Cells, 98:124-128 (2012).
[36] Philipps S.P., Guter W., Welser E., Schöne J., Steiner M., Dimroth F., et al., “Present Status in the Development of III–V Multi-Junction Solar Cells,  Next Generation of Photovoltaics”: Springer, 1-21 (2012).
[37] Connolly J.P., Mencaraglia D., Renard C., Bouchier D., Designing III–V Multijunction Solar Cells on Silicon, Progress in Photovoltaics: Research and Applications, 22(7): 810-20 (2014).
[38] Richards B., McIntosh K., Overcoming the Poor Short Wavelength Spectral Response of CdS/CdTe Photovoltaic Modules via Luminescence Down‐Shifting: Ray‐Tracing Simulations, Progress in Photovoltaics: Research and Applications, 15(1): 27-34 (2007).
[39] Maruyama T., Kitamura R., Transformations of the Wavelength of the Light Incident Upon Solar CellsSol. Energy Mater. Sol. Cells, 69(3): 207-16 (2001).
[40] Hovel H., Hodgson R., Woodall J., The Effect of Fluorescent Wavelength Shifting on Solar Cell Spectral Response,  Sol. Energy Mater., 2(1):19-29 (1979).