Utilizing Response Surface Method for Optimization of the Removing Cu(II) Ions from Aqueous Solutions Using New Magnetic Chitosan-Based Nanocomposites Containing N-Nicotinyl Phosphoric Triamides

Document Type : Research Article

Authors

Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, I.R. IRAN

Abstract

One of the newest methods to remove pollutants from water is the use of magnetic chitosan nanocomposites. Here for the first time, we used two phosphoramide compounds, N-Nicontinyl-N', N"-bis (piperidinyl) phosphoric triamide (P1) and N-Nicontinyl- N', N"-bis (4-methyl piperidinyl) phosphoric triamide (P2), in the structure of chitosan-based magnetic nanocomposites for the removal of Cu (II) ions from aqueous solution. The two chitosan/Fe3O4/ phosphoric triamide nanocomposites, NC1 and NC2, prepared using P1 and P2 respectively, were characterized using XRD, EDX, VSM, SEM, BET, and BJH methods. Removal of Cu (II) ions from polluted water was tested in different user conditions: pH (3-11), adsorbent dosages (5-25mg), and contact time of adsorbent with aqueous solutions (5-600 min). AAS (Atomic Absorption Spectroscopy) results showed that with increasing pH from 3 to 9, the amount of removal of Cu(II) ion increased, and with increasing pH from 9 to 11, the removal rate decreased. Heightening the contact time until 451 minutes also enhanced the removal efficiency up to 97.44%; After this time, the reduction of the removal amount was observed probably due to the desorption phenomena. Similarly, with the increasing amount of adsorbent (from 5 to 25 mg), the removal of Cu(II) ion increased too. Using Response Surface Modeling (RSM) the different conditions were transformed into RSM parameters and a second-order quadratic model was built to minimize the number of runs (36 runs) and also predict responses. A good correlation (with R2 = 0.9237) was found between the experiment and the statistical model, for removing Cu(II) ions from the aqueous solution using these adsorbents.

Keywords

Main Subjects


1] Savenije H.H.G., Why Water is not an Ordinary Economic Good, or Why the Girl is Special, Phys. Chem. Earth, Parts A/B/C, 27(11): 741–744 (2002).
[2] Aguilera-Klink F., érez-MorianaE. P., Sánchez-Garcıa J., The Social Construction of Scarcity. The Case of Water in Tenerife (Canary Islands), Ecol. Econ., 34: 2 233–245 (2000).
[3] Kinson K., Belcher C.B., The Determination of Minor Amounts of Copper in Iron and Steel by Atomic Absorption Spectrophotometry, Anal. Chim. Acta, 31: 180–183 (1964).
[4] Xu J., Yang L., Wang Z., Dong G., Huang J., Wang Y., Toxicity of Copper on Rice Growth and Accumulation of Copper in Rice Grain in Copper Contaminated Soil, Chemosphere, 62(4): 602–607, 2006.
[5] Bhatnagar A., Sillanpää M., Utilization of Agro-Industrial and Municipal Waste Materials as Potential Adsorbents for Water Treatment—a Review, Chem. Eng. J., 157(2): 277–296 (2010).
[6] Bhatnagar A., Kumar E., Sillanpää M., Fluoride Removal from Water by Adsorption—A Review, Chem. Eng. J., 171(3): 811–840, 2011.
[7] Yavuz C.T., Prakash A., Mayo J.T., Colvin V.L., Magnetic Separations: From Steel Plants to Biotechnology, Chem. Eng. Sci., 64(1): 2510–2521 (2009).
[10] Wang Y., Li L., Luo C., Wang X., Duan H., Removal of Pb 2+ from Water Environment Using a Novel Magnetic Chitosan/Graphene Oxide Imprinted Pb2+, Int. J. Biol. Macromol., 86: 505–511 (2016).
[13] Ashokkumar M., Sumukh K.M., Murali R., Narayanan N.T., Ajayan P.M., Thanikaivelan P., Collagen–Chitosan Biocomposites Produced Using Nanocarbons Derived from Goatskin Waste, Carbon, 15: 5574–5582 (2012).
[15] Lee H. U., Song Y.S., Suh Y. ., Park C., Kim S.W., Synthesis and Characterization of Glucose Oxidase–Core/Shell Magnetic Nanoparticle Complexes into Chitosan Bead, J. Mol. Catal. B Enzym., 81: 31–36, (2012).
[17] Reddy D.H.K. Lee S.-M., Application of Magnetic Chitosan Composites for the Removal of Toxic Metal and Dyes from Aqueous Solutions, Adv. Colloid Interface Sci., 201: 68–93 (2013).
[18] Shen C., Shen Y., Wen Y., Wang H., Liu W., Fast and Highly Efficient Removal of Dyes under Alkaline Conditions Using Magnetic Chitosan-Fe (III) Hydrogel, Water Res., 45(16): 5200–5210 (2011).
[19] Naghizadeh A., Ghafouri M., Synthesis of Low-Cost Nanochitosan from Persian Gulf Shrimp Shell for Efficient Removal of Reactive Blue 29 (RB29) Dye from Aqueous Solution, Iran. J. Chem. Chem. Eng. (IJCCE), 38(6): 93–103 (2019).
[21] Chauhan N., Narang J., Pundir C.S., An Amperometric Glutathione Biosensor Based on Chitosan–Iron Coated Gold Nanoparticles Modified Pt Electrode, Int. J. Biol. Macromol., 51(5): 879–886 (2012).
[22] Liu L., Xiao L., Zhu H., Shi X., Preparation of Magnetic and Fluorescent Bifunctional Chitosan Nanoparticles for Optical Determination of Copper Ion, Microchim. Acta, 178( 3–4): 413–419 (2012).
[23] Ma W., Ya F.-Q., Han M., Wang R., Characteristics of Equilibrium, Kinetics Studies for Adsorption of Fluoride on Magnetic-Chitosan Particle, J. Hazard. Mater., 143(1): 296–302 (2007).
[24] Monier M., Ayad D.M., Abdel-Latif D.A., Adsorption of Cu(II), Cd(II) and Ni(II) ions by Cross-Linked Magnetic Chitosan-2-Aminopyridine Glyoxal Schiff’s base, Colloids Surfaces B Biointerfaces, 94: 250–258 (2012).
[25] Maghsoodi V., Mousavi S. M., Rajabi N., Batch Equilibrium and Kinetics Studies of Cd (II) Ion Removal from Aqueous Solution Using Porous Chitosan Hydrogel Beads, Iran. J. Chem. Chem. Eng. (IJCCE), 28(3):( 2009).
[26] N Oroujzadeh., Rezaei S., Fabrication of a Novel Magnetic Nanocomposite to Remove Cu (II) Ions from Contaminated Water, Phosphorus. Sulfur. Silicon Relat. Elem., (2016).
[31] Gholivand K., Molaei F., Oroujzadeh N., Mobasseri R., Naderi-Manesh H., Two novel Ag (I) Complexes of N-Nicotinyl Phosphoric Triamide Derivatives: Synthesis, X-Ray Crystal Structure and in Vitro Antibacterial and Cytotoxicity Studies, Inorganica Chim. Acta, 423: 107–116 (2014).
[32] Oroujzadeh N., Rezaei S., New Nano Composite of N-Nicotinyl, N′, N ″-Bis (Tert-Butyl) Phosphorictriamide Based on Chitosan: Fabrication and Antibacterial Investigation, Phosphorus. Sulfur. Silicon Relat. Elem., 191(11-12): 1572-1573 (2016).
[33] Shariatinia Z., Nikfar Z., Synthesis and Antibacterial Activities of Novel Nanocomposite Films of Chitosan/Phosphoramide/Fe 3 O 4 NPs, Int. J. Biol. Macromol., 60: 226–234 (2013).
[34] Omrani R., Ali R.B., Arfaoui Y., Raddaoui A., H Hmani., May M.V El, Akacha A.B., Phosphonoamidates & Phosphopnoamidines: A Convenient Synthesis, Spectroscopic Properties, DFT Calculations & Pharmacological Studies, Journal of Molecular Structure, 1236:130321 (2021).
[36] Gholivand K., Alizadehgan A.M., Mojahed F., Dehghan G., Mohammadirad A., Abdollahi M., Some New Carbacylamidophosphates as Inhibitors of Acetylcholinesterase and Butyrylcholinesterase, Zeitschrift für Naturforsch. C, 63(3–4): 241–250 (2008).
[37] Gholivand K., et al., “Acetylcholinesterase Inhibition by Diaza-and Dioxophosphole Compounds: Synthesis and Determination of IC50 Values, J. Enzyme Inhib. Med. Chem., 19(5): 403–407 (2004).
[38] Gholivand K., Shariatinia Z., Khajeh K., Naderimanesh H., Syntheses and Spectroscopic Characterization of Some Phosphoramidates as Reversible Inhibitors of Human Acetylcholinesterase and Determination of their Potency, J. Enzyme Inhib. Med. Chem., 21(1): 31–35 (2006).
[39] Ruiz M., Sastre A. M., Guibal E., Palladium Sorption on Glutaraldehyde-Crosslinked Chitosan, React. Funct. Polym., 45(3): 155–173 (2000).
[40] Ngah W.S.W., Endud C.S., Mayanar R., Removal of Copper (II) Ions from Aqueous Solution Onto Chitosan and Cross-Linked Chitosan Beads, React. Funct. Polym., 50(2):181–190 (2002).
[42] Martinez L. et al., Cross-Linking of Chitosan and Chitosan/Poly (Ethylene Oxide) Beads: A Theoretical Treatment, Eur. J. Pharm. Biopharm., 67(2): 339–348 (2007).
[43] Davarnejad R., Karimi Dastnayi Z., Cd (II) Removal from Aqueous Solutions by Adsorption on Henna and Henna with Chitosan Microparticles Using Response Surface Methodology, Iran. J. Chem. Chem. Eng. (IJCCE), 38(3): 267–281, 2019.
[44] Oroujzadeh N., Gholivand K., Jamalabadi N.R., New Carbacylamidophosphates Containing Nicotinamide: Synthesis, Crystallography and Antibacterial Activity, Polyhedron, 22: 29–38 (2017).
[45] Monier M., Ayad D.M., Wei Y., Sarhan A.A., Adsorption of Cu (II), Co (II), and Ni (II) Ions by Modified Magnetic Chitosan Chelating Resin, J. Hazard. Mater., 177( 1):  962–970 (2010).
[46] Goleij M., Fakhraee H., Response Surface Methodology Optimization of Cobalt (II) and Lead (II) Removal from Aqueous Solution Using MWCNT-Fe3O4 Nanocomposite, Iran. J. Chem. Chem. Eng. (IJCCE), 36(5): 129–141 (2017).
[47] Chang Y.-C. Chen D.-H., Preparation and Adsorption Properties of Monodisperse Chitosan-Bound Fe3O4 Magnetic Nanoparticles for Removal of Cu (II) Ions, J. Colloid Interface Sci., 283(2): 446–451 (2005).
[48] Langmuir I., the Constitution and Fundamental Properties of Solids and Liquids. Part i. Solids., J. Am. Chem. Soc., 38(11):  2221–2295, 1916.
[49] Freundlich H.M.F., Over the Adsorption in Solution, J. Phys. Chem, 57(385471): 1100–1107 (1906).
[50] Preetha B. Viruthagiri T., Application of Response Surface Methodology for the Biosorption of Copper Using Rhizopus Arrhizus, J. Hazard. Mater., 143(1): 506–510 (2007).
[53] Dean A., Voss D., Response Surface Methodology, Des. Anal. Exp., 483–529 (1999).
[54] Montgomery D.C., Introduction to Factorial Designs, Des. Anal. Exp., 160–197 (2005).
[55] Khayat Sarkar Z., Khayat Sarkar F., Magnetic Iron Oxide Nanoparticles, Polyethylene Glycol, Surfactant, Superparamagnetic, Chemical Co-Precipitation, Int. J. Nanosci. Nanotechnol., 7(4): 197–200 (2011).
[56] Oroujzadeh N., New Chitosan-Silver Nanocomposites Containing N-Nicontinyl Phosphoric Triamide as an Antibacterial-Enhancer Additive, Iran. J. Chem. Chem. Eng. (IJCCE), 39( 4): 1–9 (2020).
[57] Scherrer P., Bestimmung Der Inneren Struktur und der Größe von Kolloidteilchen Mittels Röntgenstrahlen, in "Kolloidchemie Ein Lehrbuch", Springer, 387–409 (1912).
[58] Liu Z., Bai H., Sun D.D., Facile Fabrication of Porous Chitosan/TiO2/Fe3O  Microspheres with Multifunction for Water Purifications, New J. Chem., 35(1): 137–140 (2011).
[61] Reddad Z., Gerente C., Andres Y., Le Cloirec P., Adsorption of Several Metal Ions Onto a Low-Cost Biosorbent: Kinetic and Equilibrium Studies, Environ. Sci. Technol., 6(9): 2067–2073 (2002).
[62] Tobin J.M., Cooper D.G., Neufeld R. J., Uptake of Metal Ions by Rhizopus Arrhizus Biomass, Appl. Environ. Microbiol., 47(4): 821–824 (1984).
[64] Li Y., Zeng X., Liu Y., Yan S., Hu Z., Ni Y., Study on the Treatment of Copper-Electroplating Wastewater by Chemical Trapping and Flocculation, Sep. Purif. Technol., 31(1): 91–95 (2003).
[65] Blöcher C., Dorda J., Mavrov V., Chmiel H., Lazaridis N.K., Matis K.A., Hybrid Flotation—Membrane Filtration Process for the Removal of Heavy Metal Ions from Wastewater, Water Res., 37(16): 4018–4026 (2003).
[66] Mavrov V., Erwe T., Blöcher C., Chmiel H., Study of New Integrated Processes Combining Adsorption, Membrane Separation and Flotation for Heavy Metal Removal from Wastewater, Desalination, 157(1–3): 97–104 (2003).
[67] Juang R.-S., Shiau R.-C., Metal Removal from Aqueous Solutions Using Chitosan-Enhanced Membrane Filtration, J. Memb. Sci., 165(2):159–167 (2000).
[68] Qdais H.A., Moussa H., Removal of Heavy Metals from Wastewater by Membrane Processes: A Comparative Study, Desalination, 164(2): 105–110 (2004).
[69] Tünay O., Kabdaşli N.I., Hydroxide Precipitation of Complexed Metals, Water Res., 28(10): 2117–2124 (1994).
[71] Zhu Y., Hu J., Wang J., Competitive Adsorption of Pb (II), Cu (II) and Zn (II) Onto Xanthate-Modified Magnetic Chitosan, J. Hazard. Mater.,  221: 155–161 (2012).
[72] Huang G., Chuo Y., Zhang K., Jeffrey S.H.I., Adsorptive Removal of Copper ions from Aqueous Solution Using Cross-Linked Magnetic Chitosan Beads, Chinese J. Chem. Eng., 17( 6): 960–966 (2009).
[73] Zhang S., Zhou Y., Nie W., Song L., Zhang T., Preparation of Uniform Magnetic Chitosan Microcapsules and their Application in Adsorbing Copper Ion (II) and Chromium Ion (III), Ind. Eng. Chem. Res., 51(43): 14099–14106 (2012).
[74] Zhou Y.-T., Nie H.-L., Branford-White C., He Z.-Y., L.-M. Zhu, Removal of Cu 2+ from Aqueous solution by Chitosan-Coated Magnetic Nanoparticles Modified with α-Ketoglutaric Acid, J. Colloid Interface Sci., 330(1): 29–37 (2009).
[75] Monier M., Ayad D.M., Wei Y., Sarhan A.A., Preparation and Characterization of Magnetic Chelating Resin Based on Chitosan for Adsorption of Cu (II), Co (II), and Ni (II) Ions, React. Funct. Polym., 70( 4): 257–266 (2010).
[76] Cheng T., Chen C., Tang R., Han C.-H., Tian Y., Competitive Adsorption of Cu, Ni, Pb, and Cd from Aqueous Solution Onto fly Ash-Based Linde F (K) Zeolite, Iran. J. Chem. Chem. Eng. (IJCCE), 37(1): 61–72 (2018).
[77] Kavitha B., Sarala Thambavani D., Artificial Neural Network Optimization of Adsorption Parameters for Cr (VI), Ni (II) and Cu (II) Ions Removal from Aqueous Solutions by Riverbed Sand, Iran. J. Chem. Chem. Eng. (IJCCE), 39(5): 203–223 (2020).
[78] Chubar N., Carvalho J.R., Correia M.J.N., Heavy Metals Biosorption on Cork Biomass: Effect of the Pre-Treatment, Colloids Surfaces A Physicochem. Eng. Asp., 238(1–3): 51–58 (2004).
[82] Zinatizadeh A.A.L., Mohamed A.R., Abdullah A.Z., Mashitah M.D., Isa M.H., Najafpour G.D., Process Modeling and Analysis of Palm Oil Mill Effluent Treatment in an up-flow Anaerobic Sludge Fixed Film Bioreactor Using Response Surface Methodology (RSM), Water Res., 40(17): 3193–3208 (2006).
[83] Long A., Lei Y., Zhang H., Degradation of Toluene by a Selective Ferrous Ion Activated Persulfate Oxidation Process, Ind. Eng. Chem. Res., 53( 3): 1033–1039 (2014).
[84] Qian Q., Mochidzuki K., Fujii T., Sakoda A., Removal of Copper from Aqueous Solution Using Iron-Containing Adsorbents Derived from Methane Fermentation Sludge, J. Hazard. Mater., 172(2): 1137–1144 (2009).
[85] El-Ashtoukhy E.-S., Amin N.K., Abdelwahab O., Removal of Lead (II) and Copper (II) from Aqueous Solution Using Pomegranate Peel as a New Adsorbent, Desalination, 223(1): 162–173 (2008).
[86] Gode F., Atalay E.D., Pehlivan E., Removal of Cr (VI) from Aqueous Solutions Using Modified Red Pine Sawdust, J. Hazard. Mater., 152(3): 1201–1207 (2008).
[87] Nadeem R., Hanif M. A., Shaheen F., Perveen S., Zafar M.N., Iqbal T., Physical and Chemical Modification of Distillery Sludge for Pb(II) Biosorption, J. Hazard. Mater., 150(2): 335–342, 2008.
 [88] Chen Y., Wang J., Removal of Radionuclide Sr2+ Ions from Aqueous Solution Using Synthesized Magnetic Chitosan Beads, Nucl. Eng. Des., 242: 445–451 (2012).