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ABSTRACT: Kalman filter is a classic iterative estimation technique widely used to estimate states 

and parameters of linear dynamic systems with white Gaussian measurement and process noises. 

However, if the measurement noises are predominant, resulting in poor signal to noise ratio,  

the estimator fails to provide allowable error covariance and optimal state estimation. In such 

circumstances, to enhance the estimation accuracy, measurement constraints need to be incorporated 

in the estimation routine. Through this work, a Quadratic Program based Constrained Kalman 

Estimation (QP-CKE) estimation sequence is proposed and developed to handle the additive 

measurement noise constraints. This is implemented by incorporating deconvoluted quadratic 

program with modified Kalman estimation paradigm to handle the constraint cost function. 

Composition estimation in a laboratory binary distillation process for ethanol-water mixture 

separation under steady state operating conditions is used as a case study. Noise augmented  

Two Input Two Output (TITO) linearized dynamic model of the process is established by inferring  

to Gaussian distributed tray temperature measurements and mixture vapor-liquid equilibrium data. 

The performance of this new estimator is tested for top and bottom composition estimation for step 

input excitation for reflux rate and reboiler power inputs under feed flow disturbances and the results 

are compared with that of conventional Kalman and Q adaptive Kalman estimators. Performance  

of the proposed estimator proves to be competent with reasonable computational speed and improved 

estimation accuracy. Also, relative volatility and vapor-liquid equilibrium trends are derived  

from estimated tray composition data and results are found in good relevance with that of the experimental 

data. 
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INTRODUCTION 

Model uncertainties are inevitable in data driven 

modelling due to inconsistent and noisy measurement 

plant data. Moreover, obtaining optimal state and output 

estimations under constrained environment is a tedious 

and time-consuming process. Due to this reason, the impact 

of physical constraints is ignored without further 

investigation in many estimator designs. Also, while using 

recursive filters like Kalman for state estimation, 

incorporating any kind of constraints on states would be  

a cumbersome task. Despite the computational burden, 

standard quadratic programming approach provides solutions 

to optimal state estimation under various linear- nonlinear 

equality and inequality constraints (Simon D. et.al, (2003), 

2005, Sarkar A. et al. (2014), Andersson L. et al. (2019)).  

In order to reduce the computational burden, modified 

density deconvolutional quadratic programming based 

standalone estimator is suggested by Yang R. et al. (2018) 

for Gaussian distributed errors under various constraints. 

For non-Gaussian distributed errors authors Prakash J. et al. (2008) 

have proposed a particle filter based recursive nonlinear 

constrained estimators. To further reduce the computational 

burden, Li R. et al. (2019) illustrated a twostep convex 

optimization solution for a non-convex inequality 

constrain problem. 

There are various methods investigated in literature for 

imposing constraints on Kalman estimation paradigm. 

These are generally classified as estimate projection Kalman 

Filter (epKF), system projection Kalman Filter (spKF)  

and equality constrained Kalman Filter (ecKF). In epKF, 

the constrained estimation is achieved by projecting 

normally estimated states and error covariance on  

to the constraint subspace (Simon (2010)). In ecKF these 

projected state and error covariance are estimated  

in recursion (Teixeira, B et al. (2008) resulting in reduced 

error covariance at the cost of increased computational 

burden. On the contrary, spKF is achieved by projecting 

linear time invariant system on to the orthogonal null space 

such that it satisfies the given constrain. For improved 

accuracy and reduced the computational burden Chuanbo 

Wen et al. (2016) proposed a reduced order filtering 

approach. 

Apart from using linear estimators like Kalman, 

Rouhani A., & Abur A. (2018), Farzi A. et al. (2009) 

illustrates dynamic state and parametric estimation using 

Unscented Kalman Filter (UKF) and Extended Kalman 

Filter (EKF) under known constrain boundaries to address 

large measurement errors or outliers in states. Zhao J. (2019), 

illustrates UKF based constrained estimator to address 

equality and inequality constraints in a dynamic closed 

loop system. 

Considering the benefits of estimation optimality with 

recursive filters like Kalman, in the present work we 

designed a modified deconvolution based QP approach  

for incorporating the constraints in proposed Kalman 

estimation routine. The performance of the resultant 

estimator is tested for dual compositions estimation using 

linearized empirical model of laboratory distillation 

process under Gaussian measurement noise. 

 

THEORETICAL SECTION 

Process description 

This section provides the description of the 

distillation column, operational conditions, and 

sample chemical dynamics. 

 

Experimental setup 

We have considered a stacked eight tray laboratory 

binary distillation column UOP3CC for this study.  

The schematic of that is represented in Fig. 1. We have 

operated the column under continuous mode in which case 

the feed mixture (ethanol and water) is fed continuously 

 to the mid-section of the column through a peristaltic 

pump. The separation or distillation of the components  

in the mixture is achieved through maintaining unique 

boiling temperature across the column at which a vapor-

liquid equilibrium is maintained between volatile (ethanol)  

and nonvolatile (water) components of the mixture. At this 

point more volatile component vaporizes and collected  

at the condenser. This condensed top product is recirculated 

through reflux valve back to the column until a pure 

component is released from the top. Reflux ration ‘r’ is one  

of the manipulative variables. The temperature in the column 

is maintained using an electric reboiler chamber placed  

at the bottom of the column which continuous boils up  

the liquid in the chamber. The vapor boil-up power ‘q’ is 

another manipulative variable used in this study. Both  

the manipulative variables ‘r’ and ‘q’ are continuously 

measured fed LabVIEW panel through PLC interface. 

The column is equipped to measure temperatures  

at various junctions in the unit including the 
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temperatures across all the trays from T1 to T8 (top to 

bottom). It has an electrically operated reboiler with a power 

input ‘q’ required for the distillation with a power supply  

of 0 2.5KW. It has a reflux valve that can be operated  

with a reflux rate ‘r’ over the range 0-100%. 

The column is operated at 101.32Kpa of pressure and 

with a continuous feed input of ethanol and water mixture 

(60%-40%) at tray 5. A peristaltic pump is operating  

at a speed of 200 RPM to pump the feed into the column. 

The vapors with enriched ethanol will reach the top of  

the column and collected as a distillate with an estimated 

composition of xd mole fraction (0 to 1) at the top of  

the column and xb mole fraction (0 to 1) at the bottom of 

the column.  

The column is modeled with assumptions like constant 

molar flow across each tray, negligible liquid holdups, 

constant tray efficiencies of 0.6, and negligible heat loss 

through the walls of the column. Refer Table 1 for process 

specifications. 

 

Mixture dynamics 

Ethanol-water mixture is most commonly used non-

ideal mixture having an azeotropic boiling temperature of 

about 78.20C. Due to azeotropic phenomenon, the purity 

of the top product (ethanol) is limited to about 84% when 

operated at 101.32 kPa column pressure. Theoretical 

vapor-liquid equilibrium (VLE) and T-x-y diagrams for 

ethanol-water are used to establish a relationship between 

the effective tray temperatures and corresponding product 

compositions.  

 

Sensor selection 

The transient response dynamics of the column  

are captured through measuring tray temperatures T1 to T8 

(top to bottom), reboiler temperature T9 and overhead 

vapor temperature T10 for a step change in two 

manipulative variables reflux rate and reboiler power 

inputs (r and q). The measurements come with sensor 

noises which are approximated to white Gaussian noise 

with seed value -1 and sampling rate 1. 

The tray temperature profiles T1-T8, T9 and T10 are 

obtained from LabVIEW console connected to the 

UOP3CC, for various step input changes in reflux and 

reboiler power inputs. Reboiler power is gradually 

increased with a step size of 0.25 to 0.5 KW at complete 

Table 1: UOP3CC Process specifications. 

Specification Details 

Feed mixture Ethanol (60%)-Water (40%) 

Feed input Continuous 

Column Pressure (constant) 101.32 kPa/1 atm 

Column diameter 50mm 

Number of Trays/stacks 8 

Feed inlet At tray 5 

Top to bottom tray 
temperature profile 

T1 to T8 (0-150 0C) 

Reboiler heat duty ‘q’ 0 -2.2 KW 

% Reflux ‘r’ 0% – 100% 

Speed of the feed pump 
200 rpm (approx supplies 200 

ml/min of feed) 

 

 
 

Fig. 1: Schematic of laboratory distillation column. 
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Fig. 2: Standard deviation of tray temperature measurements 

across the column (experimental). 

 

reflux. The response in tray temperature profiles is 

measured from top tray temperature to bottom 

temperature and the reboiler temperature. Also, a 

standard deviation plot drawn from complete 

temperatures profile across the length column is plotted 

in Fig. 2. The temperatures T1(top tray) near the reflux 

and T8(bottom tray) near the reboiler indicate 

comparatively less standard deviation representing 

sensitive temperature trend towards the reflux and 

reboiler power inputs. The temperature T9 response is 

linearly increasing with reboiler input indicating the 

amount of heat gained by the sample. With this statistical 

analysis, the tray temperatures T1 and T8 can be 

considered as sensitive measurement locations for 

process modeling. These tray temperatures T1 and T8 

will give a direct inference about the top and bottom 

compositions when enveloped with dynamics of direct 

composition measurement (offline).  Further, Relative 

Gain Array (RGA) analysis is carried out for 

manipulative inputs versus selected tray temperatures T1 

and T8 in the following session to understand the level of 

sensitivity shared across the two inputs and selected two 

outputs. 

 

Process modeling 

The dynamic behavior of the column around the steady 

state operating point is sufficiently approximated using 

Linear Time Invariant (LTI) system in discrete time domain.  
 

The function n4sid in the system identification toolbox  

is opted for 2 state 2 output model building. First-order 

butter worth filters with cut-off frequency 0.01rad/s.  

The identified linear model is then coupled with first-

order static linear first principal model to obtain the final 

linear model in terms of top and bottom compositions. 

The A, B and C matrices are obtained through system 

identification in MATLAB 2016a. Series of step changes 

in reflux ratio in the range of 60 to 95%, keeping the 

reboiler input constant versus T1 and T8 temperature 

profiles are considered as input and outputs around the 

steady state operating point (refer Table 1).  The transfer 

functional model obtained for top and bottom 

compositions with respect to the model inputs reflux r 

and reboiler input q as given in (1). The transfer function 

models are then discretized into a state space model using 

the formulations (2) to (9). The LTI model thus 

developed can provide a fit value of 87% around  

the steady state operating point. 

[
xd
xb

] = [
P11 P12
P21 P22

] [
r
q]                                                      (1) 

P11 =
xd

r
=

10.25

16.75s + 1
=

10.25

16.7(z − 1) + 1
=             (2) 

10.25

16.7z − 15.7
⇒ xdk+1 =

15.7

16.7
xdk +

10.25

16.7
=

̇
 

0.94xdk + 0.613rk 

P12 =
xd

q
=

−18.9

55s + 1
=

−18.9

155z − 54
⇒                            (3) 

ẋd = 0.981xdk − 0.343qk 

P21 =
xb

r
=

8.2

50s + 1
=

8.2

50z − 49
 ⇒                              (4) 

xbk+1 = 0.98xbk + 0.164rk1 

P22 =
xb

q
=

−19.4

10s + 1
=

−19.4

10z − 9
⇒                                 (5) 

xbk+1 = 0.9xbk − 1.94qk 

 

By representing the above equations for state model, 

we get, 

xdk+1 = [
x1
x2

]
k+1

= [
0.94 0

0 0.981
] [

x1
x2

]
k

+                   (6) 

[
0.613 0

0 −0.343
] [

r
q]

k
 

y1k = [1 −1] [
x1
x2

]
k

                                                          (7) 
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[
x1
x2

]
k+1

= [
0.98 0

0 0.9
] [

x1
x2

]
k

+                                        (8) 

[
0.164 0

0 −1.94
] [

r
q]

k
 

y2k = [1 −1] [
x1
x2

]
k

                                                          (9) 

Where: 

k - Discrete time instances, 

x1, x2, x3 and x4 - state variables 

y1- distillate composition ‘xd’ 

y2- Bottom composition ‘xb’ 

u1 -%Reflux ratio ‘r’ 

u2 - Reboiler power input ‘q’ 

 

A1 = [
0.94 0

0 0.981
],B1 = [

0.613 0
0 −0.343

], C1=[1 -1] 

A2 = [
0.98 0

0 0.9
] ,B2 = [

0.164 0
0 −1.94

], C2= [1, -1] 

 

Estimator design  

Consider a linear time invariant system and corresponding 

noise augmented system given by Equations (10) and (11). 

xk+1 = Axk + Buk                                                              (10) 

yk = Cxk 

xk+1 = Axk + Buk + wk                                                   (11) 

yk = Cxk + vk 

Where k is the discrete time index, x Є Ɍ 2X1is the state 

vector, u Є Ɍ 2X1is a known input vector or a control input, y 

Є Ɍ 1X1 is a measurement vector and w Є Ɍ 2X1, v Є Ɍ 2X1 are 

process and measurement noise vectors. A- 2X2 state 

transition matrix, B-2X2 input matrix, C-1X2 observation 

matrix, and P- I2X2State error covariance matrix. ‘Q’ and ‘R’ 

are process and measurement noise covariance matrices. 

 

Kalman Estimation (KE) 

A conventional kalman estimation routine with fixed 

error and measurement covariances is implemented 

Bharati. Sagi, T.Thyagarajan (2021). The state and error 

estimation and optimization using regular Kalman filter  

is given as follows (12) to (14). 

Kk = APkCT(CPkCT + Rk)−1                                           (12) 

x̂k+1 = Ax̂k + Buk + Kk(yk − Cx̂k)                               (13) 

Pk+1 = (APk − KkCPk)AT + Qk                                       (14) 

The above eq.12 to eq.14) indicate that a prior 

knowledge of state and error covariances, Rk and Qk is 

required in order to attain proper state estimation through 

regular Kalman filters. In practice these matrices are either 

assumed or unknown. This would cause severe 

inaccuracies while estimating critically noised systems or 

systems with uncertain measurements. In the following 

sections conventional adaptive and proposed QP-

constrained Kalman estimation routines are presented to 

address these issues. 

 

Adaptive Kalman Estimation (AKE) 

In most of the practical cases where measurement 

uncertainties and process noises exist, Kalman filter fail to 

generate estimate convergence since these uncertain 

system dynamics are not included in the filter model. To 

address these issues varieties of adaptive Kalman 

estimators are developed which will estimate and update 

state and error covariance matrices Qk and Rk with 

changing system dynamics Dan Simon (2006), Gelb 

(1988), R.K. Mehra (1970), Mohamed, A and Schwarz, K 

(1999). To summarize, the adaptive filter variance and 

covariance matrices are updated for every new 

measurement enveloped with uncertain measurements and 

process noise. This is represented by the following set of 

equations (15) to (19). The error between received process 

measurements and predicted process measurements is 

evaluated to estimate and update Qk and Rk matrices  

as follows. 

eyk
= yk − ŷk                                                                      (15) 

ŷk = GKx̂k                                                                            (16) 

ĜK =
I

N
∑ eyi

eyi
T

k

i=i0

                                                               (17) 

R̂k = Ĝk −  MkP̂kMk
T                                                          (18) 

Q̂k = KkĜKKk
T                                                                      (19) 

Where 

𝑀𝐾 – Measurement design matrix 

𝐺𝐾 – Measurement innovation matrix 

�̂�𝑘  𝑎𝑛𝑑 𝐾𝐾  – are predicted covariance and state gain 

matrices respectively 

𝑒𝑦𝑘
– Measurement innovation at kth instance 

N- Estimation window length 
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y*-Actual output 

v-Measurement noise vector 

y-Measured output (y*+v) 

u-Input vector 

x̂-Constrained state estimation 

ỹ∗ -QP estimated y* 

Fig. 3: Block diagrammatic representation of proposed QP-CKE. 

 

QP- Constrained Kalman Estimator (QP-CKE): 

Kalman filter is known to provide optimal state 

estimation for linear dynamic systems with white Gaussian 

measurement and process noise. However, under model 

uncertainties and with state and observations constraints, 

it fails to provide optimal solutions. In this section we are 

proposing a reduced QP based constrained Kalman 

estimator to optimize the estimated constrained errors. 

Constraint problem is declared in such a way to obtain 

minimal error covariance by minimizing the density of 

errors accumulated across the zero mean. 

With additive sensor noises, the measured process 

response can be expressed as y=y*+v, where y* is actual 

response of the process enveloped with additive white 

Gaussian noise v which is independent of y*. In this 

section we used a modified density deconvolution based QP 

(Yang.R et al. (2019), Wolters M. A., & Braun W.J. (2017)) 

to propagate the Probability Density Function (PDF) of 

Gaussian errors over the declared equality constraints.  

We propose a cascaded constrained estimator model with 

regular Kalman filter (Fig. 3) to estimate the actual 

response of the process inferring to noisy observations of 

the plant. The Gaussian distributed error sequence 

generated after each prediction sequence in Kalman 

filtering routine has been deconvoluted using quadratic 

formulation. The PDFs of the observation vector when 

integrated to one, it provides non-negative solutions to the 

constraints in the QP formulation. The characteristic of 

density functions is that they are positive definite in nature 

and maintains optimal error even though the estimated 

constrained errors are not recursively used in the Kalman 

optimization routine. 

For a random actual response vector y*of the system, 

noisy observation vector y over n samples and observation 

error vector z with their respective PDFs are defined  

as fy*, fy and fz. In order to obtain fy, the following 

deconvolution formulations are defined through Equations 

(15) to (19). The objective functions are described through 

Equations (20) and (21). 

y∗ = yj
∗: 0 ≤ j ≤ l                                                               (20) 

ymin
∗ = min(yi: 1 ≤ i ≤ n)                                              (21) 

ymax
∗ = max(yi: 1 ≤ i ≤ n)                                             (22) 

δ =
ymin

∗ − ymax 
∗

l − 1
                                                                (23) 

With an approximation 

fy∗(y∗) = fy∗(yj
∗) ≡ fy∗,jfor y∗ ∈ [yj

∗ −
δ

2
, yj

∗ +
δ

2
] and 

fy(y) = ∑ ∫ fz(y − y∗)fy∗(y∗)dy
yj

∗+
δ

2

yj
∗−

δ

2

l

j=1

                        (24) 

The discrete constraint problem for the system 

represented in (5) and (6) is given below 

fy = D fy∗                                                                            (25) 

The state estimation error cost function is given by 

f̃y = argminfy
∗ ∥ f̃y∗ − fy ∥2+ λS(fy)                              (26) 

The above constraint problem can be re written as state 

constraint cost function given by 

minỹ(ỹTΣ−1ỹ − 2ŷTΣ−1ỹ)                                               (27) 

For known noise distributions elements of the 

constraint matrix D can be evaluated using Eq. (28). 

dij = ∫ fz(yi
∗ − y∗)dy∗

(i−j+
1

2
)δ

(i−j−
1

2
)δ

                                       (28) 

The term S(fy)is a regularization term which penalizes 

ill conditioned fy aswellas reduces the oscillations due to 

the normalization term. Elements of matrix S(fy)are evaluated  

+

v

QP 

Estimatory*

u

CKF

Kalman 

Estimator

~
*y

^

x

Constrain Objective

y
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using Gaussian regularization method and regularization 

factor  λ is a scalar quantity identified by observing the 

experimental data. For the collected set of experimental 

data, λ is evaluated using Yang R. et al. (2019) and best 

approximation is found at 0.00131. 

 

Constrained Kalman filtering routine 

Consider a linear dynamic system with white Gaussian 

measurement and process noises represented in Eq. (5) and 

6. The following steps are executed in recursive estimation 

sequence incorporating measurement constraints through 

QP deconvolution. The initialization, state prediction and 

corrections sequences are as follows. Along with state and 

state noise covariance matrices, measurement noise 

covariance is also initialized in the Kalman routine. During 

update, estimated process real output vector ŷ  is fed  

to the filter instead of noisy measurement vector ym. The ŷ 

is estimated using QP formulation as discussed earlier.  

The optimized states are then recursively estimated by 

Kalman filter for any defined constrained objectives. 

The proposed estimator works in two steps. 

1. Estimating the actual process response from the 

available noisy measurements. This is achieved through 

QP density deconvolution method discussed through  

Equations (20) to (28). 

2. State and output estimation is achieved through 

recursive Kalman filter using estimated responses coming 

from step1 approach. 

The first step facilitates in primary noise minimization 

before feeding to the Kalman filter sequence. This will 

help in reducing the computational burden on recursive 

state optimization routine within Kalman filter. Since 

noise constraint and penalization terms are pre evaluated 

using approximated noise trend, Kalman estimation can 

converge within reasonable iterations. Measurement error 

density revisions in each Kalman iteration sequence is 

limited using an allowable error threshold.  

Proposed QP-CKE algorithm is presented below 

through Equations (29) to (37).  

 

Algorithm for proposed QP-CKE 

Initialize 

�̂�0|0=E[x0], P0|0=𝑣𝑎𝑟[𝑥0]  𝑎𝑛𝑑                                     (29) 

Pk = ∫ E[f̃y*-fy]
+α

-α
, Qk, Rk, Sk and λk 

Predict 

x̅̂k = Ax̅̂k+1 + B                                                                  (30) 

P̅k = APk+1AT + Qk                                                            (31) 

Correction 

Kk = P̅kCT(CP̅kCT + Rk)−1                                              (32) 

x̂k = x̅̂k + Kk(yk − Cx̅̂k)                                                  (33) 

Pk = (I − KkC)P̅k                                                               (34) 

Updating 

Qk, and Rk  as defined in equations 15 to 19 

Where error for optimization is 

𝑒𝑦𝑘
= 𝑦𝑘

∗̃ − 𝑦𝑘
∗̂                                                                       (35) 

𝑦𝑘
∗̂ = 𝐺𝐾�̂�𝑘                                                                             (36) 

𝑦𝑘
∗̃ −  𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑏𝑜𝑡𝑎𝑖𝑛𝑒𝑑 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑄𝑃 𝑠𝑡𝑎𝑔𝑒 

𝑦𝑘
∗̂ −  𝐾𝑎𝑙𝑚𝑎𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 

f̂y = argminfy
∗ ∥ f̃y∗ − fy ∥2+ λS(fy)                              (37) 

Such that 

∑ 𝛿1𝑇𝑓𝑦 = 1 ⍱ 𝑓𝑦 ≥ 0 

 
RESULTS AND DISCUSION 

In this study, a linearized dynamic plant models (refer 

Equations (1) to (4)) are empirically derived from 

continuously operated distillation plant (UOP3CC) data. 

Noisy tray temperature observations over 2500 uniformly 

distributed samples are considered for this study and same 

are scaled down to 250 samples for presentation 

convenience. These sensor measurement noises are 

approximated to Gaussian white noise with zero mean and 

standard deviation 1. Operational parameter range for 

taking the steady state performance analysis of various 

estimators is given in Table 2. 

Results showcased in Fig.4.a to 4.d indicate the 

estimated distillate and bottom compositions developed 

from denoised plant model. Improved and smoother 

performance is noticed with proposed Kalman estimation 

sequence when compared to its counterparts.   

Fig.5. a, b and c, project the estimated composition 

profiles when the system is under simultaneous excitation 

by dynamic reflux rate, reboiler power input and feed flow 

disturbances. Because of the smaller bottom composition 

profile (around 0.3 to 0.6 mole fraction), sensor noises 

predominantly override the actual signal. It is evident from 
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Table 2: Operating range for process parameters. 

Parameter Steady state operable Range 

Reflux Rate % r 50% to 95% opening 

Reboiler Power input %q 1.5 KW to 2.2 KW 

Feed Flow %f 150 – 200 ml/min 

Distillate Composition (steady state) 0.7 to 0.84 mole fractions 

Bottom Composition (steady state) 0.03 to 0.08 mole fractions 

Steady state temperature Range 72 oC to 100 oC 

 

      a). Measured and estimated distillate composition (Xd) )                           b). Measured and estimated bottom composition (xb) ) 

            profiles for 5% step increment in reflux rate, %r                                      profiles for 5% step increment in reflux rate, %r 

 

 

 

 

 

 

 

 

 

 

 

 
      c). Measured and estimated distillate composition (xd) )                            d). Measured and estimated bottom composition (xb) ) 

         profiles for 5% step increment in vapor boil up,%q                                     profiles for 5% step increment in vapor boil up, %q 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4: Measured and estimated composition profiles under 5% step increment in reflux rate ‘r’ and vapor boil up ‘q’ (without noise). 

 

these graphs that a smoother accurate estimation is 

achievable through proposed QP-CKE even under 

combined noisy excitation for the process, which is a more 

realistic case. 

Composition profile across eight distillation trays  

is also derived and presented in Fig. 7. Proposed Kalman 

estimation provided smooth estimation compared to 

conventional Kalman and adaptive Kalman techniques 

even for smaller signal to noise ratio. A useful information 

about relative volatility ethanol-water (𝛼) is derived from 
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a). Combined noisy excitation profiles (% reflux r, %reboiler 

power q, % feed flow f) 

 

 

 

 

 

 

 

 

 

 

 

 

 

b). Distillate composition profile under process and 

measurement noises 

 

 

 

 

 

 

 

 

 

 

 

 

 

c). Bottom composition profile under process and measurement 

noises 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Measured and estimated composition profiles under 

noisy excitation. 

the tray composition profile and the estimation accuracies 

are compared and analyzed (refer. Fig. 8). The 

computational time and convergence rate are reasonably 

maintained well within the limits for QP-CKE when 

compared to that of KE and AKE. The reduced QP 

formulation penalized the accuracy and computational 

time for given set of samples. The proposed estimator 

performance is quantitatively evaluated using Root Mean 

Square Error (RMSE) metric for both noise and de noised 

process and measurement conditions. And results are 

tabulated in Table 3. It is evident from this table that QP-

CKE reasonably improves the estimator performance even 

under noisy measurements.  

The performance of the QP-CKE over unconstrained 

KE and AKE is quantitatively projected using Table 3. The 

values shown are average root mean square error values 

over 10 simulations. It is evident from the graphical 

presentations (Figs. 4,5,7 and 8) and below indicated 

quantitative performance comparisons (refer Table 3) that 

QP-CKE shows an improved performance over the regular 

Kalman and adaptive Kalman routines without imposing 

much computational burden. But the performance of these 

filters is highly model dependent and are vulnerable to 

model uncertainties. Also, the constraints considered are 

minor deviations in the sensor measurements, but do not 

address the large sensor biases and failures.  

 

CONCLUSIONS 

An analytical method for incorporating constraints 

in Kalman estimation routine using deconvolutional QP 

is proposed and results are demonstrated. The known 

constraints like minimizing measurement noises  

in the present case study can be incorporated in Kalman 

routine without increasing filter’s computational 

burden. However, proper choice of regularization 

parameter will greatly influence the accuracy of 

estimation. Also, the accuracy and smooth performance 

can be obtained using a smaller number of samples.  

The recurring Kalman estimation routine further 

optimizes the estimation. Use of PDF incorporated non-

negative approximation of errors and hence provides the 

flexibility to incorporate inequality constraints as well.  

Dual composition estimation profiles indicate that in either 

of the cases, the QP-CKE have shown smoother 

responses compared to KE and AKE methods. It is 

observed that the QP-CKE can track smaller variations 
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Table 3: Performance comparisons of estimators KE, AKE and QP-CKE. 

Parameter Estimated 

Estimation error (RMSE) 

Without noise With noise 

KE AKE QP-CKE KE AKE QP-CKE 

Distillate composition xd 0.225 0.154 0.045 0.378 0.227 0.094 

Bottom Composition xb 0.316 0.236 0.108 0.567 0.311 0.194 

Average relative volatility Ethanol-Water:  𝛼𝑎𝑣𝑒 0.279 0.185 0.081 0.456 0.233 0.105 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Estimated composition profile across all trays (bottom 

to top). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Vapor-liquid equilibrium profile derived from 

experimental and estimated data. 

 

in the state dynamics and are visible through bottom 

composition estimation plot. 

Further investigation is required to realize the 

applicability of the proposed method over nonlinear 

subspace. Also, our future works are oriented towards  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Ethanol Relative volatility profile derived from 

experimental and estimated data. 

 

extending and testing the present estimator performance 

for online estimation to incorporate direct data driven 

control. 

 

Nomenclature 

y*       Actual output vector of the process over n samples 

y                  Noisy measurement/observation vector over n  

                                                                            samples () 

v                               Measurement/observation noise vector 

fy(.)                      Probability density function vector in ‘y’ 

𝑓𝑦0                                                             Initial value of  𝑓𝑦 

f𝑦(. ) = (fy ∗ fz)(y)                     Probability density function  

                                                                         vector in ‘y’ 

fz (.)                      Probability density function vector in ‘z’ 

D                        n x n convolution matrix with elements dij 

~                             Unconstrained estimation representation  

^                                Constrained estimation representation 

λ                       Regularization factor (calculated from data) 

S                                        Error density covariance matrix 

δ      Discretization parameter over the length of samples l 
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