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ABSTRACT: This review is a denote to the detailed analysis of the self-healable features of Carbon 

Fiber-Reinforced Polymer (CFRP) composites. It discusses the different healing strategies, types of 

employed healers, time to healing, mechanical recovery, inherent properties such as glass transition 

temperature, and the advantages and disadvantages of each healing strategy. Composite materials 

with self-healing capabilities can automatically repair themselves after being degraded. As a result, 

maintenance tasks are greatly simplified. This paper aims to give a concise overview of the most 

recent advancements in self-healing composites. The article complements earlier survey papers  

by offering an updated overview of the many self-healing theories over the preceding two decades 

and a comparison of healing processes and manufacturing methods for creating micro-capsules  

and microvascular networks. The review also dispenses a summary of diverse chemistries utilized  

to fabricate self-healable polymeric composites and their future scope to humankind. To identify 

significant challenges and prospective research insight, elements that affect healing efficiency  

are provided based on the research assessment. This provides a basis for the researchers for future 

applications based on these intelligent self-healing composites. 
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INTRODUCTION 

Carbon Fiber Reinforcements (CFR)s with high  

carbon content (99%) for polymer matrix composites  

 

 

 

paved the way in commercial production when Richard B. 

Millington et al. developed a procedure (US Patent  
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No. 3294489) using rayon precursor in the year 1960s [1]. 

Since then, Carbon Fibers (CF) have typically been the 

diverse constituting materials utilized in polymeric 

composites. They possess a higher specific strength-to-

weight ratio, rigidity, thermal stability, conductivity, and 

corrosion resistance. They beneficially enhance the 

product's efficiency and are reliable for various 

engineering systems [2]. Carbon Fiber Reinforcement 

Product (CFRP) composites are generally used in 

manufacturing aircraft airframe materials [3], automobile 

parts [4], blades (fans, windmills, and turbines) [5], and 

sports utilities. Using CFRP composites in commercial 

aircraft as structural materials mainly reduces the final 

mass while enhancing the gas mileage. Reducing aircraft 

weight transforms into increased fuel efficiency and 

implies the least expense every time the aircraft aviates. 

CFRP materials accounting for 50%, are utilized to 

manufacture the fuselage of the Boeing 787 Dreamliner 

with comparatively 20% enhanced gas mileage than  

the antecedent, Boeing 767 [6]. As further advancement, 

the Airbus A350 XWB(eXtra Wide Body) was manufactured 

with 52% CFRP materials in fuselage and wing spars.  

It had wide seating layouts with aerodynamics for Mach 

0.85 cruise thus, overtaking its predecessor A340, Boeing 

787 dream-liner, and a few others in efficiency [7].  

All these advantages of CFR over the other fibers compel 

one to use CF as a property-rich reinforcing material  

in a polymer matrix composite. A comparison of CF-

reinforced polymer composites with other fiber-reinforced 

polymers and bulk metallic materials is illustrated in Fig. 1. 

The composite parts are designed to withstand high 

mechanical loading in typical structural applications of an 

engineering system. However, the mechanical 

performance required of these composites might be 

transformed by thermo-mechanical impacts, internal 

micro-cracks, and delamination that tend to appear within 

the composite material, which goes unnoticed by the naked 

eye. Hence, Non-Destructive Inspection (NDI) or similar 

Structural Health Monitoring (SHM) beyond manual  

eye inspection is required to scrutinize for occurring 

damages. [9] An NDI system is an expensive and time-

consuming survey. In this system, checking is restricted 

to specific smaller regions and fatigue damages may be 

undetectable. An extension or improved NDI system is  

an SHM system that uses different pressure and crack 

sensors. There are expensive data-transmitting tools and  
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Simplified log-log Ashby diagram showing the specific 

stiffness against specific strength for different engineering 

materials [8]. 

 

exterior gadgets for structural health inspection or data 

storage giving time-to-time notification on the overall 

integrity of the structure to prevent from leading 

catastrophic failures. [10–12] The self-healing composite 

materials can self-heal structural and functional 

applicability. [13] The need for time-consuming and 

expensive inspections is diminished for such composites. 

Self-healing design is a unique substitutive approach for 

the generally used damage-withstanding methods. It is 

introduced for the polymer resin matrix and a few 

cementitious matrix systems. It discards the necessity of 

damaged polymer matrix composite structures to be 

temporarily repaired. It has gained encouragement from 

the natural stimulus to damage animal skin and flesh. The 

animal's healing process of hemostasis (stopping 

bleeding). [14] Based on the healing mechanism utilized, 

the self-healing composites can be mainly differentiated 

into two classes: Extrinsic and Intrinsic self-healing 

composites. Some standard direct damage recovery 

techniques are discussed in this review. However, these 

techniques have certain drawbacks and are not particularly 

effective. [15] The principal distinction between these two 

classes of self-healing techniques depends on their type of 

chemical interactions. 

 

Extrinsic self-healing 

These self-healing techniques depend on exterior 

healing (healing material) and catalyst (if required) 

designed as embedded tiny capsules or dispersed vascular 

networks within the matrix system. [16–19] Typical 
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layouts utilized for manufacturing design materials 

comprise: 

(i) Micro-encapsulation and  

(ii) Micro-vascular network  

Classically, in the earlier designs, the healing 

mechanism starts with the fracture in the embedded hollow 

networks or micro-capsules. Upon crack intrusion,  

microcapsules or vascular networks attached to the 

cracked surface break, and the healing agents flow out.  

A polymerization reaction takes place to heal the cracks, 

utilizing an external trigger or catalyst (embedded if 

required). However, microencapsulation techniques have 

a few drawbacks. Limited healing agents and a liquid form, 

which provide no structural functionality other than 

healing and degrade on long-term storage in a capsule,  

are among the significant drawbacks. Compared to the 

encapsulation process, the vascular network provides few 

advantages; if the healing agent in the vascular network 

finishes or degrades, it can be refilled externally thus,  

to provide continuous efficient self-healing over time.  

The capsule shells are generally made up of organic  

or inorganic complexes such as Polyurea (PU), Poly Urea-

Formaldehyde (PUF), [20] Silica shell walls, 

Polyurethane, Poly Melamine-Formaldehyde (PMF), and 

Poly Melamine-Urea-Formaldehyde (PMUF). 

 

Intrinsic self-healing  

These self-healing system elements require no exterior 

intervention of healant in embedded form and are 

established either on supramolecular or active covalent 

chemistry. The supramolecular method utilizes  

π-π stacking, hydrogen bonds, and ionomers interaction. 

The dynamic covalent chemistry method uses 

cycloaddition (D-A reaction), free-radical reactions, and 

general chain interchange reactions. The polymer matrix 

can organize the cleaved reversible bonds in these systems 

by undergoing a polymerization reaction or crosslinking 

on exterior influence. [21–24] With multiple damage 

intrusions, this technique instigates healing cycles as no 

concept of the externally embedded healing agent is 

involved. However, some methods need some exterior 

indulgence to trigger the healing mechanism. Some 

examples are heat and mechanical stimuli, pH change, UV, 

and light stimuli. However, self-healing damaged surfaces 

with significant contact differences becomes challenging, 

while minor damages are known to be efficiently robust. 

Standard straightforward techniques for repairing  

matrix 

The typical repair techniques for damaged matrix 

materials are bolted or bonded techniques. A bolted repair 

technique is implemented for damages like de-laminations 

in high-loading composite structures. Commercial aircraft 

composites; use titanium and aluminum bolts and adhesive 

patches to recover the mechanical features. However,  

the bolted holes in this repairing technique considerably 

change the stress concentrations and propagating force 

capacity within the material. Bonded repair techniques  

are implemented for minor damages like micro-cracks  

in lightly loaded composite structures. A conventional 

bonded repair technique injects polymerizing material into 

the damaged site to cure it. This repairing technique may 

be implemented either by using a similar matrix or a few 

discrete matrixes, thus is applicable for different metal and 

FRP composite systems as a temporary/permanent repair 

but does not need to be improved long term. Ideally, the 

injected polymerizing material will fill all voids within the 

matrix. Once all the holes are lost, high stresses are 

prevented from concentrating into the damaged sites, thus 

further preventing crack growth. Patches can be utilized 

simultaneously after injecting material, thus providing 

excellent resilience of bending strength, elastic property, 

and immunity to corrosion. [9] These traditional repairing 

techniques are principally practiced for healing 

external/interior fractures; however, the damaged site 

should be initially detected. [10,25] Additionally, inherent 

features of the patch and composite part must be 

appropriate, e.g., when the coefficient of thermal 

expansion of the patch and material has a significant 

difference, the temperature may create uneven tensions 

between the patch and material, causing patch failure. 

Furthermore, the adhesive properties act are vital because 

its failure may cause the patch to de-bond and failure loss 

exposure. 

 

SELF-HEALING: CONCEPT AND MATERIALS 

Many research publications concerning self-healing 

polymers as matrix materials have appeared since the early 

1990s. They cover the eagerness of researchers to solve the 

nature of recurring problems due to damages in composite 

materials and the exponential increase in the material 

design of polymers and FRP composites. They can 

strengthen themselves in response to damages. The typical  
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polymer matrices (thermoplastic and thermosetting resins) 

used for the CFR composites are all inherently brittle; thus,  

all are susceptible to thermo-mechanical damage initiation 

(micro-cracks and de-lamination) during service life. For 

this reason, achieving long-term stability is a challenging 

obstacle for applying CFRP composites as a prime 

component in various sectors. Advancements were made 

in the material designs to minimize the damage to CFRP 

composites. [12] The matrix material's glass transition 

temperature (Tg) is also integral as the stiffness 

significantly drops when the temperature shifts to Tg.  

To determine which material system suits any application 

best could first understand all possible healing methods 

and the techniques to be applied with the respective matrix 

material to establish the materials in specific applications. 

Earlier damage-tolerant designs used continuous 

enhancement of material properties to stop damage 

propagation within the material. They were not reasonably 

achievable; thus, a new self-healing design approach was 

introduced. It can control/eliminate matrix-dominated 

damages. It was regarded as a technical divergence from 

regularly practicing composites' repair to autonomous self-

healing functional composites. Traditional repair 

techniques in composite materials are used after noticeable 

macro-level damage has occurred; the repairing is usually 

laborious & cost inefficient. However, smaller 

(micro/nano level) damages are impossible for the naked 

eye to notice, and they often use costly damage inspection 

techniques (e.g., NDI and SHM), sensors, and actuators. 

[10] Once the damage is detected, the next step of Self-

healing is an efficient approach to fortify the damaged 

features of  CFRP composites. Ideally, strategies for 

incorporating this feature within the composite had to come 

from the polymer resin matrices. All polymer resins, either 

thermoplastic or thermosetting, tend to self-healing on an 

external stimulus's influence. [26] Theoretically,  

any micro-crack/damage initiated in a thermoplastic 

matrix may be mitigated by liquefying the thermoplastic 

using thermal stimuli. Nevertheless, that leads to a certain 

amount of thermoplastic degradation. Furthermore, some 

researchers have reported the synthesis of polymer blends 

as self-healing matrices through mixing thermosets with 

thermoplastic resins or their specific combinations. The 

structural robustness of self-healing composites could be 

strengthened after failure, just like living species. 

However, incorporating self-healing features within 

composites might only conduct the healing mechanism 

once exteriorly stimulated. While designing these self-

healable systems, specific attention is paid to the diffusion 

of healant in extrinsic healing. A few other concerned 

factors respective to different healing strategies should be 

adequately controlled. The healing functionality within a 

CFRP composite enables recovery of a vast range of 

material properties upon damage intrusion, including 

fracture strength, hardness, durability, and conductivity 

(thermal/electrical). It further makes the CFRP composite 

materials more reliable for application in various sectors. 

Some efficient desirable properties of self-healing 

composites can be stated as follows: 

Potential for autonomous healing of the composite 

system. 

- Capability to adapt the failure within composite 

multiple times 

- Long service-span durability 

- Able to heal large-scale defects of composite 

- Able to reduce maintenance expenses 

- Manifest higher or equivalent mechanical characteristics 

compared with conventional composites in use 

- Glass transition temperature (Tg) is much higher than 

the relevant environment temperature 

- It is more economical than the presently used material 

polymers 

In this review, the existing literature has been 

thoroughly analyzed to briefly outline the manufacturing 

techniques, features, and mechanical characteristics of the 

self-healing FRP matrix composites. Structural composites 

utilized over the metal counterparts have shown drastic 

savings of 20% to 40% on weight with minor maintenance 

and machining expenses. With the increasing research 

interest in self-healing composite materials, the results can 

be safely used to present that they are highly durable, 

fatigue-resistant, dimensionally stable, easily maintainable, 

and self-repairable. 

Composite materials fail after a prolonged degradation 

process. That leads to the formation of micro-cracks or 

internal matrix delaminations unseen to the naked eye. 

Thus, an All-time manual inspection of these 

cracks/delaminations is not possible, and this is where self-

healing comes as a boon to the damaged composites. 

However, the standard repairing methods and self-healing 

techniques introduced to Polymer Matrix Composites (PMC)s 

have acquired popularity over the past three decades, and 
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the demand for composites is increasing daily. [6,7]  

To meet the needs of engineering applications and for 

large-scale marketing of these composite materials, low-

cost manufacturing techniques have been developed 

worldwide, and the final product is aimed to be recyclable 

with the help of these flexible techniques. 

Along with all capabilities, incorporating a self-healing 

function within composite material would increase its 

lifetime with reduced inconvenient damages. [25]  FRP 

composite material consists of two chemically/physically 

separate constituents (Continuous and Discontinuous 

phases) with robust interfacial bonding. The final 

composite has unique mechanical and functional 

properties, which directly depend on the form and amount 

of both constituents. In contrast, the healing functionality 

of the composite depends on the healing technique and the 

type and amount of healable continuous phase (polymer 

matrix) used. The discontinuous phase (Fiber 

reinforcement) used for the self-healing composite should 

not be considered healable as it does not possess any such 

function. For the desirable features to be incorporated  

in the finished composite part, one must consider these 

critical aspects while choosing the reinforcing material: 

- Size-aspect ratio and diameter 

- Shape-chopped, particulate, continuous, and non-

continuous fiber  

- Inherent features strength, modulus, conductivity, and 

density 

- Surface morphology and chemistry 

- Impurities 

- Structural voids 

The polymer matrix phase is an essential component of 

the composite material systems, and one must carefully 

choose the matrix by considering its chemical stability 

with the reinforcement and inherent characteristics ( gel-

time/pot-life, shelf-life, glass transition temperature, 

toxicity, and curing time); ability to wet the support 

(viscosity) and processing technique. Further, the critical 

nature of polymer as the matrix of carbon fibrous 

reinforcement composite is to:   

- Act as a barrier against an unfriendly environment 

- Guard the fiber's surface against mechanical abrasion 

- Hold the fibers in the proper orientation 

- Propagate the load among fibers   

- Enhance inter-laminar shear strength 

- Improve the performance of composite  

EXTRINSICALLY SELF-HEALING COMPOSITES 

MICROENCAPSULATION DESIGN 

The self-healing technique utilizing a 

microencapsulated design system possesses the capability 

of core healant to flow in the crack of polymer that requires 

healing and is stored in the microcapsules. [27] The 

capsule ruptures/breaks upon a crack intrusion in the 

matrix, thus discharging healant in the damaged site 

through the capillarity effect. Additionally, repairing the 

damaged portion via cross-linking reaction with the 

catalyst. [28] Emerging extensive interest in this field led 

many researchers to study and develop various strategic 

models of microencapsulation, which could incorporate 

the self-healing feature in the composites. Some of the 

different microencapsulated healing system models have 

proven efficiently beneficial and are discussed here. 

(i) The Solo Capsule Model – In this model, there is a 

solo healant encapsulated, which on release reacts with 

dormant bonds within the matrix to undergo cross-linking 

reaction under humidity, light, or other external stimulus 

and produce chain-linking entanglements across cracked 

surfaces. The core healant may be easily meltable metals, 

active chemicals, and solvents. 

(ii) The Embedded Capsule with dispersed Catalyst 

Model – It is based on capsules with loaded self-healing 

monomer and catalyst evenly distributed within the 

polymer matrix. Upon damage intrusion, the matrix with 

microcapsules breaks to release the monomer, which then 

polymerizes and reacts with the neighboring catalyst in the 

polymer. 

(iii) The Dual Capsule Model – These models of 

microcapsule are used when the polymerizable healing and 

curing agent is applied for self-healing in Fiber reinforced 

polymer (FRP) matrix are individually encapsulated. Upon 

crack propagation, microcapsules break, and the two agents 

undergo cross-linking polymerization reactions with each 

other, thus healing the site effect. This encapsulating model 

has a limitation. Obtaining a uniform distribution of two 

microcapsules in the matrix phase is a task, and the 

probability of polymerization on a crack intrusion is small. 

(iv) The Phase-separated droplet with embedded 

Capsule Model. In this model, at least one healing agent 

undergoes phase separation to form a co-continuous phase, 

and the other agent is encapsulated in the matrix.  

On damage occurrence, the capsule breaks, and the two 

fluids react to polymerize and heal the damaged site. 
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Fig. 2: Healing mechanism of typical microencapsulation design 

[29]. 

 

(v) All-in-One microcapsule Model – The catalyst and 

healant are contained within various layers of a single 

microcapsule (totally independent). The catalyst (initiator) 

and healant needed are to be held either by the shell wall or 

inside the capsule secluded by partitions (multi-layer capsule) 

or a single large capsule containing separate small capsules 

with monomer and catalyst within them (capsule-in-capsule). 

When capsules break during damage initiation, they release 

polymerizing healing agents and heal the damage, as depicted 

in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3: SEM image of typical microcapsules [20]. 

 

Microencapsulation techniques used in self-healing 

composites 

The core healant is encapsulated primarily to guard  

against environmental matrix influences and avoid pre-reaction, 

keeping the healing agent dormant for an extended time. 

The encapsulation method should be processed 

corresponding to assure the comprehensive necessity of any 

particular healing composite; thus, careful choice of the 

encapsulation method for the core healing material and 

preparation of the shell wall matrix is required [30].  

The typical microcapsules made through polyurea-

formaldehyde grafted epoxy functional group shell used 

for microencapsulation techniques to develop self-healing 

composites are illustrated by an SEM (Scanning Electron 

Microscopy) image in Fig. 3. 

The microencapsulation method, along with the 

respective shell wall endorsed for this design of healable 

composites, must consider a few essential features: 

- Properties of the shell 

- Properties of healing agent to be encapsulated (low 

viscosity) 

- Microcapsule dimension 

- Shell wall porosity 

- Effectiveness of capsule formation (amount of 

healing agent encapsulated) 

- The interacting interface of the microcapsules with 

the matrix 

- Resistance of capsule to compound with the matrix 

- Processing parameters needed for the composite 

healing system 

Emulsification techniques are typically used in 

preparing microcapsules containing encapsulated healing 

agents. In this process, polymerization of the monomers  
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creates a shell structure around the floating droplet-shaped 

healant. Emerging self-healing methodologies led to  

the development of various novel encapsulation techniques. 

Below are some microencapsulation techniques that  

can embed microencapsulated self-healing agents as core 

material in the CFRP matrix; however, a range of 

encapsulation techniques do not necessarily initiate the 

self-healing mechanism and suit it. 

 

In-situ polymerization technique 

The encapsulation technique of in-situ polymerization 

has been used since the 1980s and found its path in 

industrial applications in the 1990s. Dynamic agitation 

(vibration) or sonication of biphasic liquids is utilized  

in producing oil emulsions of water and water emulsions 

of oil during in-situ polymerization. The initiators and 

monomers used to prepare microcapsule walls are diffuse 

within the scattered or constant phases. Polymerization 

generally occurs over the external boundary of the healing 

agent droplet, or it can be said that the resulting polymer 

accumulates on the droplet surface. Polymers synthesized 

by monomer attain insolubility in emulsion, thus, 

producing a microencapsulation of desired core healing 

agent. [31] Generally, tuning the size of microcapsules is 

easy by varying the emulsifying agent with the diffusion 

rate; but ideally, obtaining homogeneous distribution is a 

task. The prepared microcapsules via in-situ polymerization 

technique are highly dependent on interior and exterior 

material and their synthesizing environment, as shown in 

Fig. 4. The synthesis environment depends on the type of 

emulsifying agent based on core materials, weight ratio, 

pH, synthesis temperature, and mixing speed. The 

introductory self-healing enabling micro-capsule developed 

by in-situ polymerization contained healant Dicyclopentadiene 

(DCPD) covered with a wall of Poly-Urea-Formaldehyde 

(PUF). The obtained microcapsules were spherical  

with a diameter ranging from 10-1000 µm controllable  

by variation in agitation speed, and the shell wall thickness 

varied from 150-220 nm. Following this work, PUF shell 

microcapsules were synthesized by Suryanarayana et al. 

for encapsulating linseed oil. [32] 

PUF is used frequently in the preparation of shells but 

has some limitations. Limitations include lower sealing 

attributes, poor weather resistance, and high brittleness, 

which reduces its use in encapsulating applications.  
 

 
Fig. 4: Illustration of formation of n-situ Polymerized 

microcapsule: (a) oil core droplets, (b) process of 

microencapsulation, (c) shell formation by crosslinking, (d) 

formed microcapsule and (e) fabricated microencapsulated 

polymeric phase change material [33]. 

 

A relatively expensive method was implemented by Yuan 

and co-workers, who removed the urea unit from the PUF 

by introducing melamine to produce PMF microcapsules. [34] 

These composites with microcapsules containing 

diglycidyltetrahydro-o-phthalate (DTP) (epoxy monomer) 

and polythiol (hardener for epoxy material) were 

characterized using fatigue test that showed toughened 

capability even when exposed for 24hr to a higher 

temperature approximately 250˚C.  

As thapproximatelyined interest, Liu et al. prepared 

cost-efficient poly (melamine urea formaldehyde) 

(PMUF) capsule walls filled with ethylidene norbornene 

(ENB)– a kind of healing polymer. [35] PMUF 

microcapsules showed robust, comprehensive properties 

over the UF\MF capsules for usage in microencapsulated 

self-healing polymers. In their further study on ethylidene 

norbornene (ENB) as a healing agent, the same research 

group inspected a relatively complex and expensive 

Shirasu Permeable Glass (SPG) membrane emulsifying 

process via an in-situ method. Unconventional to the 

earlier prepared microcapsules, the capsules synthesized 

by this technique showed high thermal stability up to 

300˚C and narrow space dispersion. Further, the particle 

size analysis proved more uniformly sized capsules  

with a mean diameter of 40 µm with a wall depth of range 

(400-600nm). These UF, PMF, and PMUF compounds 

were efficiently utilized to heal the known polymer 

matrices with one essential familiarity. Above 200°C, 

formaldehyde in these synthesized compounds would be 

partially removed. Furthermore, the synthesis of PMUF 

capsules is way easier than the synthesis of PUF and PMF 

capsules. 
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Interfacial polymerization technique 

The interfacial polymerization technique for 

encapsulation is analogous to the in-situ polymerization 

technique as it prepares self-healing, enabling 

microcapsules using oil or water emulsifying. However, 

the reactants required to prepare the shell wall are procured 

from the dual continuous and dispersed phase. Typically 

in this methodology, the healing agent initially undergoes 

emulsification or dispersion in a water phase which 

contains a pre-diffused compound to form a shell wall 

forming oil in water emulsion. Second is the addition of 

different compounds emulsifiable within the oil phase. 

Then after, crosslinking starts near the aqueous phase and 

organic phase interface, which results in microcapsules 

with droplet-shaped core healing materials. The third  

is separating the aqueous phase containing microcapsules 

from the organic phase, and then transferring 

microcapsules containing the healing agent as core 

material to an aqueous solution. Microencapsulation via 

Interfacial polymerization technique was introduced for 

preparing polyurea(PU) walled microcapsules by using 

toluene 2,4-diisocyanate(TDI) pre-polymer with 1,4-

butanediol(BD). [36] The synthesized microcapsules  

were used to encapsulate 2-octyl cyanoacrylate (OCA),  

an adhesive tissue of cyanoacrylate; for application as  

self-healing acrylic bone cement in the bio-medical sector, 

as shown in Fig. 5. The microcapsules had an average 

diameter ranging from (75-220µm) generated with  

an agitation rate at 350-1100 rpm. [37] 

Isophorone diisocyanate (IPDI) is an additional highly 

active, without any potential accelerator healant for 

moisture conditions. The P.U. shell microcapsule system 

encapsulates this self-healing enabling agent. However, 

the less dense P.U. microcapsules could not protect the 

moisture-sensitive IPDI from the environment, thus 

reducing the microcapsules' service life. An alternative 

approach was proposed to overcome the problem using 

metal shell walled microcapsules like nickel. [38] The 

respective microcapsule preparation includes liquid-form 

synthesizing procedures such as the electroless plating 

method, Interfacial polymerization technique, and 

emulsifying process. Capsules developed via this 

technique had an average width of 50µm with a shell 

thickness of less than 2µm. They demonstrated significant 

advantages over polymer shell wall microcapsules, like 

enhanced mechanical features and better permeable 

resistance from the fluid molecules. These capsules were 

successfully filled with healing materials and can be 

approximately preserved for nine months or more. N.R. 

Sottos et al. [39] reported an intermix method utilizing the 

interfacial technique of P.U. with in-situ U.F. as a modified 

encapsulation procedure for a liquid healing agent 

containing capsules featuring separate walls. This 

synthesis route involved the dissolution of P.U. pre-

polymer (Desmodur L75) in the core liquid ethyl 

phenyleacetate (EPA) at Urea Formaldehyde (U.F.) 

polymerization. The produced microcapsules showed 

excellent interfacial bonding with higher temperature 

stability than the conventional U.F. microcapsules. 

Benefits regarding this technique can be stated  

as follows: 

- Encapsulation efficiency is relatively high (high 

content of healing agent encapsulated) 

- Moderate reaction conditions 

- Faster encapsulation of core healing material 

- Requirements for the number of reactants and their 

purity are flexible 

However, a limitation is that a specific unreacted shell 

monomer is contained in the generated microcapsules, 

which can deactivate the core healing material on reacting. 

 

Pickering emulsion templating technique 

In the Pickering emulsion templating technique, the 

emulsion is balanced with particles of solid nature 

adsorbed onto the interacting region of the dispersed and 

continuous phase. Walter Ramsden (1903) stated its effect [40] 

and entitled on S.U. Pickering (1907) described this 

phenomenon [41], but using stabilized Pickering emulsion 

technique in microencapsulation of typical healants was 

indicated by Velev and co-workers in 1996. [42] Healant 

encapsulation in polymer matrix by this technique utilizes 

two steps; a stable Pickering emulsion preparation and 

freezing (no movement) of the colloidal particle adsorbed 

on droplet-shaped core healing material as illustrated  

in Fig. 6. Although properties of the solid particles, such 

as hydrophobicity, shape, and size of a particle affect  

the stability of an emulsion. Firstly, a mechanical stimulus 

is required to accumulate colloidal particles in the interface 

to create a stabilized emulsion. Secondly, with the help of 

physical or chemical cross-linking reactions, colloidal 

particles freeze and create a stabilized and dense structural 

wall. Pickering emulsion templating offers advantages  
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Fig. 5: Synthesis of metal microcapsules containing liquid healant [38]. 

 

over traditional molecular agent stabilized emulsions like 

highly stable emulsion, minimal pollution and low 

toxicity, recyclability, lower fizziness, and comparatively 

lower cost. They are efficient in microcapsule formation 

with distinct features. This method is a better alternative 

for encapsulating. Challenging to encapsulate chemicals 

by a typical encapsulation process, and it helps make 

capsules with specific structures. Li et al. [43] developed 

the microcapsule synthesizing technique to encapsulate 

core solvents (perfluoroheptane, hexadecane, and xylene) 

by Pickering emulsion templating interfacial atom transfer 

radical polymerization (PETI-ATRP) of N,N- methylene 

bisacrylamide. The preparation method utilized better 

Pickering emulsification, which involved the 

accumulation of anionic initiators upon surfaces of 

cationic nanoparticles. Yang et al. prepared PU\PMF dual 

shell wall microcapsules to encapsulate ethylphenylacetate 

(EPA) as a healing agent via a stable oil-in-water 

emulsifying technique with silica nanoparticles. [44]  

The pre-dissolved M.F. polymer within the continuous 

phase interfacial reacted with the oil droplets containing 

IPDI to form the inner P.U. shell. In contrast, the M.F. pre-

polymer undergoes in-situ polymerization to form a 

spherical, rough surface outer PMF shell wall. The formed 

microcapsules via the Pickering emulsion technique 

represented the all-in-one microcapsule model stated 

above. The size of the capsule relatively depended on the 

amount of adsorbed silica nanoparticles on the droplet 

surface. With a similar all-in-one microcapsule model  

in mind, Yang et al., in their proceeding work, prepared 

PMF-silica hybrid shell microcapsules containing numerous 

small spherical-shaped di-butyl phthalate (DBP) loaded  

P.U. capsules via Pickering emulsion template technique. [45]. 

At first, with the help of interfacial polymerization,  

polyurea microcapsules with an average diameter of 15µm 

containing DBP were synthesized by oil-in-water 

emulsion. They were balanced with water-absorbing 

nanoparticles of Silica. Secondly, a water-in-oil emulsion 

was formed when tiny PU microcapsules dispersed in an 

aqueous solution and were emulsified in toluene with a 

hydrophobic silica nanoparticles emulsifier. Finally, 

loaded PU capsules were compacted inside a PMF-silica 

hybrid shell of an average diameter of 150µm via cross-

linking between formaldehyde and melamine within  

the aqueous phase. 

 

Sol-gel reaction technique 

Encapsulating technique via sol-gel reaction is 

primarily used to prepare self-healing enabling inorganic 

capsules (Silica for its impermeability) in micro (µ) to 

nano (n) range diameter. The reaction takes place at low 

temperatures in moderate conditions. The sol process is 

initiated before gelation occurs via forming a low viscous 

solution by dissolving the inorganic precursor for shell 

material in water (molecular mixing of solution) and 

further allows for customization of shell material.  
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Fig. 6: Schematic synthesis of EPA-filled dual-shell (SiO2) microcapsules [44]. 

 

 

Fig. 7: Schematic for preparation of smart (PS-TEOS) microcapsules. 

 

Synthesis in the Sol-gel technique includes the oxide 

network created by the polycondensing monomer-

monomer reaction within the aqueous phase, which takes 

quite a long time.  

The conventional silica-sol-gel encapsulation 

technique has gained broad research interest. It has 

originated from stöber chemistry, which technique 

involves pre-hydrolysis and condensation of an 

orthosilicate [such as tetraethyl orthosilicate (TEOS)] via 

aqueous glycerol micro-emulsion templating as shown in 

Fig. 7. [46,47] This self-healing enabling technique is 

efficient for thermoplastic resin systems like polyvinyl 

aniline [48]. In another self-healing cementitious research 

study, the same sol-gel and interfacial techniques were 

utilized to encapsulate methylmethacrylate (MMA) as  

a healing agent and triethylborane (TEB) as a catalyst. [46] 

It showed promising results for implementation in polymer 

matrix composites. Silica, an inorganic element,  
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helps encapsulate various aqueous, oil, and solid particles. 

It maintains the chemical activity of the healing agent  

on encapsulation. Moreover, the silica microcapsules  

can be efficiently dispersed in the polymer matrix. 

 

Mini-emulsion polymerization technique 

A mini-emulsion is a unique emulsion produced by 

force on the mixture consisting of an unmixable dual 

aqueous phase (water-oil phase) with single or more co-

surfactants. High shearing processes stabilize, and high 

energy homogenization limits diffusion degradation by 

helping surfactants/co-surfactants against gravity 

separation. Ostwald ripening, coalescence, and 

flocculation occasionally cause instability. Mini-emulsion 

polymerization of a monomer occurs within pre-existing 

monomer particles without forming new particles. The 

dispersed phase droplets have a range diameter (50nm-
1µm), thus creating small-scale capsules of nano to the 

micro range with low solid content. The approach of 

encapsulation via mini-emulsion polymerization was first 

introduced in 1973. It can be used to prepare 

functionalized polymer nanocapsules [49], which can 

encapsulate various materials, initiators, or catalysts with 

little dose(as per required for healing), either hydrophobic 

or hydrophilic, irrespective of their state (liquid or solid) 

[50] by ring-opening metathesis polymerization. It is not 

limited and has applicability to encapsulate materials in 

polyaddition or polycondensation polymerization. 

However, encapsulating the healing agent via mini-

emulsion polymerization leads to the formation of 

microcapsules of smaller size with lower healing content. 

It provides inefficient healing, as the amount of healing 

agent filled at the cracked portion is relatively common for 

efficient self-healing functionality. As an advancement, 

microcapsules via the mini-emulsion polymerization 

technique can be used in systems where a low amount of 

catalyst is needed to be encapsulated for fulfilling the self-

healing function. Two methods are applicable to prepare 

microcapsules via mini-emulsion polymerization: Extreme 

energy techniques and Inferior energy techniques. The 

powerful energy technique uses high-shear methods, 

typically via exposure of the mixture to a high-power 

ultrasound wave or high-pressure homogenizer. While the 

inferior energy technique uses a water-in-oil emulsifying 

process which gradually transforms to an oil-in-water 

emulsion by altering its temperature and configuration, the 

water-in-oil emulsifying process is slowly adulterated and 

cooled by adding water drop by drop to attain an inversion 

point and a phase inversion temperature. These factors 

cause the interfacial tension between two liquids to 

decrease significantly, forming tiny oil droplets of 

diameter (50-500nm) in water with lower solid content 

inside. [51] However, mini-emulsions prepared are 

generally thermodynamically unstable but are kinetically 

stable; thus, on leaving the emulsion for some time, the oil 

and water mini-emulsions separate from each other again. 

Klumperman and Van den Dungen et al. reported the 

preparation of Poly (styrene-maleic anhydride) (PSMA) 

shell nanocapsules loaded with pentaerythritol tetrakis(3-

mercapto propionate) as a core healing agent via Mini-

emulsion polymerization technique. [52] The prepared 

PSMA nanocapsules were in the range of (150-350nm) in 

diameter and were stabilized using a suitable length of 

polystyrene block in a reaction with formaldehyde. 

Furthermore, they synthesized styrene nanocapsules for 

their application as healable coating, emphasizing thiol-

ene chemistries. Styrene nanocapsules with a diameter 

ranging from (60-150nm) were prepared to encapsulate 

DiNorbornene (1, 6-hexanediol di (norborn-2-ene-5-

carboxylate)), which serves as a co-surfactant because of 

its higher hydrophobicity and boiling point. K. Landfester 

et al. showed the first-ever liquid dicyclopentadiene 

(DCPD) encapsulation as a healing agent in silica capsules 

of approximately 300nm in diameter via Mini-emulsion 

free radical polymerization. [50] The preparation 

procedure is the same with two monomer particles divided 

by the two mini-emulsion liquid phases, which polymerize 

to form functional nanocapsule shells containing the core 

agents ( DCPD and Grubb's catalyst) capable of healing by 

instigating ring-opening metathesis polymerization 

(ROMP). 

 

EXTRINSICALLY SELF-HEALING COMPOSITES 

- MICROVASCULAR NETWORK  

The self-healing technique using a micro-vascular 

design system possesses the capability of core healant to 

flow in a crack of polymer that requires healing and is 

stored in the vascular tubes. The vascular system 

rupture/break upon a crack intrusion in a matrix, thus 

discharging the healant in the damaged site through  

the capillarity effect and repairing the damaged portion via 

a cross-linking reaction with the catalyst. Emerging extensive  
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interest in this field led many researchers to study and 

develop various strategic techniques to prepare these 

micro-vascular networks, which were able to incorporate 

the self-healing feature in composites. 

The vascular design of extrinsic healing is an 

alternative approach to the microencapsulation design but 

with the same healing chemistry. It mimics the animal 

circulatory system in which the heart pumps blood through 

arteries and veins. [54] One of the primary characteristics 

of this design is that hollow interconnected networks can 

be connected to an external source and can be refilled once 

depleted. It eases the maintenance of healing agents within 

the hollow networks. However, the storage time of the 

healant affects the composite's healing nature of the 

healant whose self-life has lapsed and does not contribute 

towards healing. [55] 

The micro-vascular design approach was initially used 

for the cementitious matrix to heal and introduced for FRP 

composites. [56,57] However, they must be expanded to 

small-scale applications like coatings due to complexities 

in large-scale models, as illustrated in Fig. 9. [58] 

Typically, hollow fiber tubes were used to prepare vascular 

networks. Dry et al. [59] demonstrated composite material 

with an incorporated glass pipette tube channel containing 

a healing agent (cyanoacrylate). Further, using other fiber 

materials such as copper and aluminum as hollow tubings 

enhances the self-healing efficiency of a micro-vascular 

design approach. [58]  A modified sacrificial element was 

developed to prepare interconnected networks via layer-

by-layer and direct write assembly techniques. [19] These 

tubeless micro-vascular networks were first synthesized by 

embedding a sacrificial network in composite material and 

later by eliminating it via thermal stimulus and vacuum. 

[54] Once the micro-vascular network has been set up 

within the composite, they are filled with the high-

pressurized, low-viscous healing agent. [14] Uniform 

dispersion of the healing agent inside an interconnected 

network is required for uninterrupted fluid flow. 

Nevertheless, the local ambient temperature may affect the 

healing agent's viscosity. Generally, healing agent dispersion 

is ensured via capillary forces for large interconnected micro-

vascular networks, as shown in Fig. 10. [60] However, the 

external pump may be required to certify homogeneous 

dispersion and efficient flow out of healing agents for 

large-diameter vascular networks. [18] These pumped 

high-pressure healing agents can cause breakage  

 

 

 

 

 

 

 

 

 

Fig. 8: Human veins inside skin Source [53]. 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Micro-vascular design composites [53]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: 3-D Micro-vascular network [63]. 

 

of the end of a vascular network, thus leading to the 

unnecessary release of a healing agent. Additionally, these 

systems require external intervention for pumping action. 

As soon as the damage propagates through self-healing 

composites and breaches through a micro-vascular 

network, the healant immediately diffuses to the damaged 

sites and undergoes polymerization to heal sites. Higher 

fracture toughness healing efficiencies were reported  

for optimum pressurized vascular networks [61,62]. 

The architectural design of these hollow networks is 

crucial for the healing agent circulation dynamics, damage 

intrusion, and mechanical features, respectively [14].  



Iran. J. Chem. Chem. Eng. Shankar Rai R. et al. Vol. 42, No. 3, 2023 

 

902                                                                                                                                                                    Review Article 

The additional reinforcing material is utilized to improve 

the characteristic features of the composite; thus, it helps 

by altering initial neat matrix mechanical characteristics; 

the same is the function of the incorporated microcapsules 

and vascular networks. However, characteristics strictly 

depend on distribution and inherent properties while 

affecting damage propagation patterns. [64] Various 

network designs were proposed for the vascular approach, 

from simple designs like straight parallel vascular 

networks [62] too much complicated 3-D herringbone 

designs. [65] Esser-khan et al. utilized polylactide (PLA) 

fiber as a sacrificial element to develop a herringbone 3-D 

network within a composite. This system proved to have 

higher healing efficiency than other network designs. [63] 

 

INTRINSICALLY SELF-HEALING COMPOSITES: 

The intrinsically healable materials depend on the type 

of healable phase used to mimic the healing nature of a flesh 

injury, such as the growth of underlying tissues and skin. 

This self-healing composite category is pretty different from 

extrinsically healing composites due to their inherent 

chemical integrity and requires no external intervention of 

any healing agent; however, an external stimulus may be 

needed to trigger the healing mechanism. [66]    

A recombining process of the cleaved chains in 

polymer achieves this level of healing in the FRP 

composite system due to the appearing readily 

synthesizable functional bonds (–C=C, -OH, -SH, -C=O, -

NH₂, -S-S, -COOH and –Si-O), cyclic bonds and free 

radicals at the damaged surface. Ideally, the virgin and 

recombined healed surfaces are identical, as illustrated in 

Fig. 11. It follows two types of healing chemistry:  

covalent and supramolecular. 

 

Covalent chemistry 

Intrinsic healing chemistry using the durability of the 

covalent bonds after damage relies on environmental 

conditions and the applied matrix material. [67] 

Depending on the used matrix material, these covalent 

chemistries can be further categorized into chain 

exchange, free radical, and cycloaddition reactions. 

 

General chain exchange reactions 

The general chain exchange reactions include 

recombining the covalent bonds in a single or extensive 

network of chains. Deng et al. [68] demonstrated the 

healing of polyethylene oxide (PEO) with modified ends 

of acylhydrazines. The chain ends recombining at room 

temperature (25˚C). The silonate end group reaction and 

disulphide chain exchange reaction are additional 

examples of healing reactions taking less time. [69,70] 

Yoon et al. [71] developed an ambient self-healing thiol-

disulfide-based polymeric film. The end disulphide bonds 

shuffled their position via ionic or free radicals formed due 

to ionic scission [72,73], heating, and oxidation, respectively, 

at the damaged surface, as shown in Fig. 12. [74] 

Further self-healing at room temperature triggered  

by light was demonstrated utilizing the thiuram disulfide 

bond within the polyurethane matrix [75,76]. Canadell et al. [77] 

showed  

that many reactive ends lead to higher strength 

resilience; however, the concentration has to be optimally 

maintained without affecting the matrix features. As an 

advanced study, Bailey et al. illustrated the electric 

conductance property of the chain exchange self-healing 

coatings. [78] 

 

Free radical reactions 

Few chain exchange reactions require the formation of 

free radical ends such as polyurethane bonds and 

disulphide bonds. [79,80] These free radical ends have low 

reactivity for the solid phase, while they become more 

readily reactive for the fluid phase. The healing mechanism 

instigates when the cleaved free radical ends react with 

opposite surface ends before responding with other 

elements such as oxygen. The reaction of free radicals with 

oxygen consequences in the deprivation of healing 

functionality and has no further interaction with healing. [81] 

Imato et al. [82] illustrated using diaryl-bi-benzo-furanone 

(DABBF) as a thermally stable oxygen-tolerant agent. 

This system healed efficiently at ambient conditions 

without external intervention. [83]. Yuan et al. [84]  

demonstrated healable modified polystyrene by 

alkoxymine bonds to ensure dynamic cross-linking. The 

system heals the formation of free radicals on cleavage. 

Many factors affect the stability of the formed radicals, 

like environmental temperature [85], pH [86], and the 

presence of a few compounds. The stabilized free radicals 

result in better healing performance. The CS₃ functionalized 

Tri-Thio-Carbonate (TTC's) compounds enable healing 

within polystyrene, poly methyl methacrylate (PMMA) [87],  

and n-butyl acrylate (BA) [88,89]. The poly (BA)  
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Fig. 11: Intrinsically Healing Mechanism illustrated by SEM images [24]. 

 

 
Fig. 12: Optical micrographs under an atmosphere of the thiol-functionalized polymer [71]. 

 

cross-linked with TTC through reversible addition-

fragmentation chain transfer (RAFT) healed under UV 

light (330 nm) stimulus for 24 hrs. Ghosh et al. [79] 

demonstrated two types of self-healing composite 

networks (PU + oxetane (OXE) + chitosan (CHI)) [79,90] 

and (PU + oxolane (OXO) + chitosan (CHI)). [91,92] Both 

composites healed at different times under UV light. Fig. 

13 delineates the damaged BA polymer and healed source 

during the healing of BA polymer. 

 

Cycloaddition reactions  

Cycloaddition reactions are another kind of self-

healing synthesis where molecules undergo ring 

formation. Typically Diels-Alder (DA) synthesis is  

a cycloaddition reaction method. However, materials like 

polyacrylates, polyamides, and epoxies self-heal using 

reversible cross-linking via (4+2) electron exchange 

cycloaddition. [93] These systems' diene and dienophile 

cleave under thermal or mechanical stresses [94] and heal 

when the temperature is lowered. [95] Analysis of diene 

(furan) and dienophile (maleimide) illustrate the effect of 

cross-linking concentration on healing features. [96] 

Another type of cycloaddition reaction for the self-healing 

mechanism is (2+2) cycloaddition. Chung et al. [97] 

formed cyclobutane rings with 1,1,1 Tris-Cinnamoyloxy 

Methyl) Ethane (TCE)  via (2+2) cycloaddition synthesis 

under UV stimulus greater than 280nm, as depicted  

in Fig. 14. Zhang et al. utilized this reaction for coumarin [98], 

and Klukovich et al. developed a stress-induced healing 

mechanism via [2+2] cycloaddition of perflourocyclobutane. [99] 

Similar to this reaction [4+4], cycloaddition was utilized 

by K. Landfester and co-workers to polymerize the 

anthracene derivatives [100]. The triggering stimulus of 

heat and light for healing shows much assurance for future 

applications. However, a constant source has to be 

maintained, which can harm the composite material [70]. 

 

Supramolecular chemistry 

Intrinsic self-healing via supramolecular chemistry has 

attracted many researchers for decades due to its faster 

cross-linking mechanism than covalent chemistry. [101,102] 

This chemistry depends on the whole network structure 

rather than the specific bonds, which are relatively 

compassionate and are not used to heal structural composites.  

200 µm 

1 min 10 min 60 min Next day 
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Fig. 13: Images of BA polymer (a) Damaged (b) Healed Source [89]. 

 

 
Fig. 14: Intrinsic healing via (2+2) cycloaddition  in cinnamoyl group (optical) [97]. 

 

Nevertheless, both intrinsic healing chemistries are based 

on the direction of networks. The supramolecular 

chemistry can further be grouped into three classes such as 

hydrogen bonds, interaction via Ionomer healing, and π-π 

stacking. 

 

Hydrogen bonding 

Collectively aligned solo, double, and quadruple 

hydrogen bonds in a chain dominate a few material 

properties such as viscosity, chain length, and mechanical 

strength. Although these hydrogen bonds have inadequate 

strength compared to covalent bonds, they can be utilized 

to provide quality strength. [103] Increasing hydrogen 

bonds increases strength and stability linearly. [104,105] 

Various studies on ureidopyrimidinone (UPy) having 

quadruple hydrogen bonds revealed that they are highly 

temperature dependent [106], stable [107], and easy to 

synthesize. Foster et al. demonstrated healable cellulosic 

material via UV stimulus by incorporating UPy with 

poly(ethylene-co-butylene) as a matrix. [108] Few 

researchers suggest using Poly-Iso-Butylene (PIB) to show 

hydrogen bonding features. [109,110] Banerjee et al. 

developed a self-healable coating for photovoltaic cells 

under sunlight using PIB functionalized with coumarin. [111] 

Carboxylic acids connected to a functional group of 

thermoreversible rubbers act as a promising self-healing 

candidate under ambient conditions. [112] However, high 

temperatures and moisture restrict the healing nature of 

these materials. [113] Synthesis of these systems is easy [114], 

and the damage event itself instigates the healing, thus 

autonomous. Tuncaboylu et al. utilized the hydrophobic 

interaction of stearyl methacrylate (C18) with acrylamide 

as self-healable hydrogels. [115] A polyvinyl alcohol 

(PVA) hydrogel made by the freezing/thawing process can 

self-heal at room temperature without a stimulus or healing 

agent. With a high fracture stress and mechanical strength, 

PVA hydrogel can mend quickly. Hydrogen bonding 

between PVA chains at the interface of the cut surfaces is 

what causes the phenomena, according to research on the 

impact of hydrogel preparation conditions. Fig. 15 

illustrates the hydrogen bonding phenomenon of self-

healing properties of PVA hydrogel and their stretching 

 

Self-Healing 
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Fig. 15: Optical images of PVA gel (a) Separate gels (b) Half-cut gels (c) Undergoing healing in ambient (d) Healed and bent  

(e) Healed & stretched [88]. 

 

 
Fig. 16: Molecular structure of (π-π) bond in blended healing polymer [118]. 

 

capability after developing a hydrogen bonding upon 

bringing two separate halves in contact for 12 hours at room 

temperature without any external stimulus. 

 

π-π  Stacking 

A typical type of supramolecular chemistry is π-π 

stacking. It has been generally found in several polymers 

in pyrenyl derivatives and diimide. The molecular 

structure of the π-π bond in blended healing polymer is 

illustrated in Fig. 16. Burattini et al. have reported using 

polyimide in conjunction with other compounds. Using 

polysiloxane with polyimide as a self-healing polymer 

heals at 100 °C. [116] In contrast, the polyamide with 

polyimide heals the tensile strength completely at 50˚C. [117] 

They healed the polyimide with the help of pyrenyl 

component. [118,119] Hydrogen bonding in combination 

with π-π stacking used polyimide with polybutadiene modified 

by pyrenemethylurea. [120] Polyimide functionalized with 

bis-pyrenyl showed healing ability at 140 °C. [121]  

Xu et al. developed a higher-strength gel by utilizing 

nitrobenzoxadiazole modified with cholesterol derivatives; 

however, no healing efficiency where reported [122]. 

 

IONOMER INTERACTION 

This type of supramolecular chemistry is also known 

as ionic interaction [70] and usually requires two steps to 

instigate self-healing. First, the damaging impact generates 

heat and cleaves the ionic bonds in the matrix. This heat 

further softens the damaged site via partial melting,  

as illustrated in Fig. 17. Secondly, the damaged molten site 

is buoyant, like the mobile polymer chains, and optimal 

concentrations of these ions are required for efficient 

healing. [123,124] This healing functionality is 

remarkably differentiable compared to other known 

counterparts and is typically emphasizing poly(ethylene-

co-methacrylic acid) [125,126]. 
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Fig. 17: Intrinsic optical healing via Ionic interaction [125]. 

 

Summary and future perspective 

This review paper manifests the application of CFRP 

composite with self-healing enabling matrix material for 

advanced structural applications. These functional 

composites are prone to damage during their service. 

Although many traditional approaches to repair exist, they 

need to ensure complete reliability for use, and costly 

maintenance must be done regularly. Self-healing 

composites have a promising future in the development of 

novel products. Many researchers are working to restore 

functional characteristics upon healing material defects 

using these innovative hybrid materials, as considered in 

Table 1. However, self-healing composites have some 

limitations regarding the healing function's durability and 

the healing mechanism's comprehension. The self-healing 

composite's most significant hurdles are identifying 

defects and advancing the healing process. Researchers  

in this field continuously develop new healable composite 

designs that can heal themselves while functioning. 

Emerging literature and highly developed healing-filled 

extrinsic microcapsule design and micro-vascular design 

healing strategy prove efficient for extensive scale 

damages. However, the microcapsules/microvascular 

being hollow do not provide any structural strength  

to the fabricated composites. 

Further, the design of these extrinsic techniques helps 

at the time of crack initiation/ propagation to spread the 

damage and may lead to an unhealable catastrophe. Thus, 

an optimal amount of microcapsules/microvascular are  

to be embedded within the matrix material so that  

the technique provides efficient healing without any 

adverse effect. The self-healing function in microcapsule 

design strictly depends on the helant content stored in the 

capsules and enables single-time healing. In contrast,  

in micro-vascular design, the tubular network can be fixed 

with an external source, enabling repeated healing. The 

stored helant inside these microstructures also depends on 

their shelf-life, thus cannot provide efficient healing once 

the healant crosses its shelf-life (generally between 7-10 

months). 

In contrast to extrinsic techniques, intrinsic healing 

techniques do not use any embedded micro-structures and 

thus retain their strength. They have minimal crack growth 

and can supply repeatedly. Intrinsic technique strictly 

depends on the chemistry of the healable matrix and  

the stimulus employed to instigate the healing; further,  

the damage in the internal sections (interlaminar regions) 

of the composite depends on the depth of effect of stimuli 

such as heat, light, moisture, electricity, electromagnetic 

waves, and pH. Out of these stimuli, heat, electricity,  

moisture, and pH have a significant depth, thus healing 

internal damages. In contrast, the others have limited effect 

on the surface of the composite and can leave internal 

fatigue damages unhealed. However, intrinsic technique 

healing is known to strengthen minor-scale damages, 

while large-scale damages may not heal efficiently.  

A remedy to this disadvantage can be using Shape Memory 

Alloy (SMA) in conjunction with an intrinsic technique 

[not discussed in this work], which can minimize damage 

scale and provide efficient healing.  

To this end, self-healing CFRP composites can be 

structurally solid and have functional properties 

comparatively. They reduce the need for costly temporary 

repairs, proving better than damage-tolerant designs used 

earlier. This review work systematically analyzes current 

development in the growing field of self-healing  



Iran. J. Chem. Chem. Eng. Developments and Prospects of Self-Healing ... Vol. 42, No. 3, 2023 

 

Review Article                                                                                                                                                                    907 

Table 1: Summary of healing performance and healing mechanism of self-healing composites. 

S. 

No. 
Materials Healing Mechanism Healing environment 

Mechanical 

properties 

Healing 

efficiency(%) 
Ref. 

1 
P(AM-co-DAC)/graphene oxide(GO) 

Hydrogels 

Hydrogen bonds, 

electrostatic interaction 
Drop water 

Tensile 

strength, 
˃92 [127] 

2 Polyurethane (PU) nanocomposite 
Disulfide (S-S) 

exchange reactions 

Heating and laser 

irradiation 

Tensile 

strength 
90.1 [128] 

3 PAA-GO-Fe3+ Hydrogel Ionic bonding 

Contact and 

immersed in FeCl3/ 

HCl 

Tensile 

strength 
⁓100 [129] 

4 Cinnamoyl mechanophore/epoxy 
Photochemical 

cycloaddition 
UV irradiation Recovery 24 [130] 

5 
Silicon rubber/ graphene  

nanoplatelets composites 
Reversible bonds Thermal annealing 

Tensile 

strength 
87 [131] 

6 Graphene/PU Diels-Alder reactions 
Infrared (IR) 

radiation 

Tensile 

strength 
96 [132] 

7 Chitosan/GO Hydrogel 
π-π stacking, hydrogen 

bonding 

Contact (room 

temperature) 
Recovery 91 [133] 

8 Dihydroxyl coumarin-based PU 
Photochemical 

cycloaddition 
UV irradiation 

Tensile 

strength 
64.4 [98] 

9 
Reduced functionalized GO/ PU 

composites 
Diels–Alder chemistry Microwaves 

Young’s 

modulus 
93 [134] 

10 
Thermoset rubber (dipropyl disulfide, 

dibutyl disulfide, 1-penthanethiol) 

Disulfide–thiol 

exchange reactions 

Room temperature 

(RT) 

Tensile 

strength 
⁓99 [135] 

11 PU elastomer Alkoxyamine 80°C, Argon - 70 [136] 

12 Polythiourethane networks 
Aromatic exchange 

reaction 
160°C, 20 min - 

Complete 

removal of cracks 
[137] 

13 
Hydrogels (acrylamide and 

hydrophobic acrylic) 

Metal-ligand 

coordination 
RT 

Tensile 

strength 
100 [138] 

14 Cyclodextrin and adamantane Host-guest interactions 60°C, 10min 
Tensile 

strength 
70-72 [139] 

15 
Lignin-modified graphene and 

waterborne PU 

Diffusion of polymer 

chains 
IR radiation 

Elastic 

modulus 
171 [140] 

16 
Thermosetting vitrimer/ thermoplastic 

PU 
Polymer blends RT - 

Fracture surface 

joined 
[141] 

17 GO/thermoset PU Shape memory assisted 
Near-infrared 

(NIR)radiation 

Tensile 

strength 
85 [142] 

18 PU nanocomposite/carbon nanotubes Remote self-healing NIR radiation - 80 [143] 

19 Glass fibers epoxy composites 
Microcapsules and 

hollow fiber 

Diluted epoxy by 

heat 

Tensile 

strength 
97.6 [144] 

20 Cementitious structure Microvascular network Sodium silicate at RT Crack closing 81 [145] 

21 
Glass fiber reinforced vitrimerbased 

shape memory polymer 

Shape memory alloy 

(SMA) wires (Flexinol) 
Heat @150°C 

Tensile 

strength 
100 [146] 

22 
Graphene-glass fiber-reinforced 

polymer nanocomposites 
SMA wires - 

Bending 

strength 
64 [147] 

 

composites with the outlook of designing and fabrication 

as a critical factors. It would help in promoting emerging 

advancements in self-healable system materials. 
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