Investigation of MIL-53(Fe)-(COOH)2 as a Filler in Sulfonated Polystyrene/Polyethylene Membrane for Application in Direct Methanol Fuel Cell

Document Type : Research Article

Authors

1 Department of Applied Chemistry, University of Gonabad, Gonabad, I.R. IRAN

2 Department of Chemistry, Yasouj University, Yasouj, I.R. IRAN

3 Department of Material Engineering, University of Gonabad, Gonabad, I.R. IRAN

Abstract

Some of the main challenges of direct methanol fuel cell membranes are proton conduction and the high selectivity required. In the present study, new proton exchange membranes were developed using sulfonated polystyrene (SPS), polyethylene (PE), and a type of Metal-Organic Framework (MOF) used in the Direct Methanol Fuel Cells (DMFCs). MIL-53(Fe)-(COOH)2 is a metal-organic framework prepared in this study, and it was used as a filler in manufacturing the membranes. Characterization of these membranes was performed by SEM, FT-IR, and TGA. SEM images showed that the MIL-53(Fe)-(COOH)2 particles have a porous surface without any agglomeration. Also, the conductivity of proton, methanol permeability, oxidation resistance, and ion conductance tests were performed on membranes to evaluate membrane performance. The effect of MIL-53(Fe)-(COOH)2 content in membranes was also studied. The embedding of MIL-53(Fe)-(COOH)2 in SPS/PE membrane increases proton conductivity and selectivity factor. Finally, the prepared membranes were applied to the direct methanol fuel cell, and the performance of the membranes was examined. The result was a maximum peak power density of 23.61 mWcm2 with a maximum current density of 138.46 mA/cm2.  

Keywords

Main Subjects


 [1] Shen G., Liu J., Wu H.B., Xu P., Liu F., Tongsh C., et al. Multifunctional Anodes Boost the Transient Power and Durability of Proton Exchange Membrane Fuel Cells, Nat. Commun., 11: 1191-1200 (2020).
[2] Wang Y., Ruiz Diaz D.F., Chen K.S., Wang Z., Adroher X.C., Materials, Technological Status, and Fundamentals of PEM Fuel Cells e a Review, Mat. Today, 32: 178-203 (2020).
[3] Ahn JA C.Y., Kang S.Y., Ok-Hee K., Lee D.W., Lee J.H., Goo Sh.J., Hyun L.Ch., Cho Y.H., Yung-Eun S., Enhancement of Service Life of Polymer Electrolyte Fuel Cells through Application of Nanodispersed Ionomer, Sci. Adv. 6: 1-9 (2020).
[4] Kraytsberg A, Ein-Eli Y., Review of Advanced Materials for Proton Exchange Membrane Fuel Cells, Energy & Fuels, 28: 7303-3730 (2014).
[5] Ahmad H., Kamarudin S.K., Hasran U.A., Daud W.R.W., Overview of Hybrid Membranes for Direct-Methanol Fuelcell Applications, Int. J. Hydrogen Energy, 35: 2160-2175 (2010).
[6] Wang Y., Chen K.S., Mishler J., Cho S.C., Adroher X.C., A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research, Appl. Energy, 88: 981-1007 (2011).
[7] Karimi M.B., Mohammadi F., Hooshyari K., Recent Approaches to Improve Nafion Performance for Fuel Cell Applications: A Review, Int. J. Hydrogen Energy, 44: 28919-28938 (2019).
[11] Zhang J., Aili D., Lu S., Li Q., Jiang S.P., Advancement Toward Polymer Electrolyte Membrane Fuel Cells at Elevated Temperatures , J. Res., 2020: 1-15 (2020).
[12] Kamarudin S.K., Ahmad F., Daud W.R.W., Overview on the Application of Direct Methanol Fuel Cell (DMFC) for Portable Electronic Devices, Int. J. Hydrogen Energy, 34: 6902-16 (2009).
[14] Minghan X., Hao X., Qingfu W., Lichao J., Sulfonated Poly(Arylene Ether)s Based Proton Exchange membranes for fuel cells,  Int. J. Hydrogen Energy. 46: 31727-31753 (2021).
[15] Peighambardoust SJ, Rowshanzamir S, Amjadi M. Review of the Proton Exchange Membranes for Fuel Cell Applications, Int. J. Hydrogen Energy, 35: 9349-9384 (2010).
[17] Neelakandan S., Kanagaraj P., Sabarathinam R.M., Nagendran A., Polypyrrole Layered SPEES/TPA Proton Exchange Membrane for Direct Methanol Fuel Cells, Appl. Surf. Sci., 359: 272-279 (2015).
[18] Nicotera I., Simari C., Coppola L., Zygouri P., Gournis D., Brutti S., Minuto F.D., Arico S., Sebastian D., Baglio V., Sulfonated Graphene Oxide Platelets in Nafion Nanocomposite Membrane: Advantages for Application in Direct Methanol Fuel Cells, J. Phys. Chem. C, 118: 24357-24368 (2014).
[19] Yang F., Xu G., Dou Y., Wang B., Zhang H., Wu H., et al. A Flexible Metaleorganic Framework with a High Density of Sulfonic Acid Sites for Proton Conduction, Nature Energy, 2: 877-883 (2017).
[20] Chuy C., Basura V.I., Simon E., Holdcroft S., Horsfall J., Lovell K.V., Electrochemical Characterization of Ethylenetetrafluoroethylene-G-Polystyrenesulfonic Acid Solid Polymer Electrolytes, J. Electrochem. Soc., 147.12: 4453-4458 (2000).
[21] Escorihuela J., Narducci R., Compa~n V., Costantino F., Proton Conductivity of Composite Polyelectrolyte Membranes with Metal-Organic Frameworks for Fuel Cell Applications, Adv. Mater. Interface, 6: 1801146 (2019).
[22] Donnadio A., Narducci R., Casciola M., Marmottini F., D’Amato R., Jazestani M., et al. Mixed Membrane Matrices Based on Nafion/UiO-66/SO3H-UiO-66 Nano-MOFs: Revealing the Effect of Crystal Size, Sulfonation, and Filler Loading on the Mechanical and Conductivity Properties, ACS Appl. Mater. Interfaces, 9: 42239-46 (2017).
[23] Wang S., Luo H., Li X., Shi L., Cheng B., Zhuang X., et al. Amino Acid-Functionalized Metal-Organic Framework with Excellent Proton Conductivity for Proton Exchange Membranes, Int J Hydrogen Energy, 46: 1163-73 (2021).
[24] Jian-Rong L., Sculley J., Zhou H.C., Metal–Organic Frameworks for Separations, Chemical Reviews, 112(2): 869-932 (2012).
[25] Akihito Sh., Yamada T., Kitagawa H., Wide Control of Proton Conductivity in Porous Coordination Polymers, J. Am. Chem Soc, 133.7: 2034-2036 (2011).
[26] Yaghi O.M., O'Keeffe M., Ockwig N. W., Chae H.K., Eddaoudi M., Kim J., Reticular Synthesis and the Design of New Materials, Nature, 423(6941): 705-714 (2003).
[27] Salehi M., Karimipour G.R., Montazerozohoori M., Ghaedi M., Mandanipour V., New Proton-Exchange Membrane (PEM) Based on the Modification of Sulfonated Polystyrene with MIL-53(Al)-NH2 for Direct-Methanol Fuel Cell, Iran. J. Chem. Chem. Eng. (IJCCE), 41(12): 4193-4202 (2022).
[29] Mandanipour V., Noroozifar M., Modarresi-Alam A.R., Preparation of Modified Sulfonated Poly (Styrene Divinylbenzene) with Polyaniline as a New Polymer Electrolyte Membrane for Direct Methanol Fuel Cell, Int. J. Electrochem. Sci., 11: 5302-5317. (2016).
[30] Mandanipour V., Noroozifar M., Modarresi-Alam A.R., Khorasani-Motlagh M., Fabrication and Characterization of a Conductive Proton Exchange Membrane Based on Sulfonated Polystyrenedivinylbenzene Resin-Polyethylene (SPSDR-PE): Application in Direct Methanol Fuel Cells, Iran. J. Chem. Chem. Eng. (IJCCE)., 36(6): 151-162 (2017).
[32]  Ahmad H., Kamarudin S.K., Hasran U.A., Daud W.R.W., A Novel Hybrid Nafion-PBI-ZP Membrane for Direct Methanol Fuel Cells, Int. J. Hydrogen Energy, 36: 14668-14677 (2011).
[33] Yoonoo Ch., Dawson C.P., Roberts E.P.L., Holmes S.M., Nafion®/Mordenite Composite Membranes for Improved Direct Methanol Fuel Cell Performance, J. Membr. Sci., 369: 367-374 (2011).
[34] Ni H.J., Zhang Ch.J., Wang Xi.Xi., Ma Su.Y., Liao P., Performance of Special-Shaped Direct Methanol Fuel Cell with sol-Gel Flux Phase, J. Fuel Chem. Technol., 38: 604-609 (2010).
[35] Chen C.Y., Garnica-Rodriguez J.I., Duke M.C., Dalla Costa R.F., Dicks A.L., Diniz da Costa J.C., Nafion/Polyaniline/Silica Composite Membranes for Direct Methanol Fuel Cell Application, J. Power Sources, 166: 324-330 (2007).