Diagnosis of Heat Exchanger Scales in Cooling Water Systems

Document Type: Research Article

Authors

Chemical and Petrochemical Division, Research Institute of Petroleum Industry, P.O. Box: 18745-4163 Tehran, I.R. IRAN

Abstract

An experimental database is compiled in order to fingerprint the scales formed over the hot surfaces of heat exchangers, in cooling water systems or other systems with similar chemistry. To collect these data, a dynamic simulating pilot plant was designed with considerable application flexibility among which simultaneous flow of water with different velocity and heat fluxes to three simulating heat exchangers can be mentioned. Changing the water chemistry and using various inhibitors composition known in the art, the nature of scale deposits formed on the heating elements was studied by scanning electron microscopy (SEM) coupled with Energy Dispersive X-ray instrument. The heat flux of the elements ranges from 9.46 × 104 to 1.45 × 105 J/m2.sec, which depending on the velocity of fluid passing through the orifice of pipe, give rise to skin temperatures of 80 °C to 230 °C. The flow velocities used in this study were 0.21 and 0.46 m/sec.  Phosphonates and most popular polymers were studied as scale inhibitors.
 

Keywords


[1] Hasson,  D., Semiat,  R., Bramson, D., Busch, M., Limoni-Relis, B., Desalination, 118, 285 (1998).

[2] Qingfeng, Y., Yangqiao, L., Anzhong, G., Jie, D., Ziqiu, S., Chemical Engineering Science, 57, 921 (2002).

[3] Neville, A.,  Morizot, A. P., Chemical Engineering Science, 55, 4737 (2000).

[4] Jean-Yves, G., Jean-Claude, B., Tolosa, H., Nathalie, G., Talanta, 43, 1497 (1996).

[5] Konstantinos, D.D., Journal of Chemical Technology & Biotechnology, 80, 630 (2005).

[6] Kmec, P., Emerich, D.E., US Patent 6207079, (2001).

[7] Shakkthivel, P., Sathiyamoorthi, R., Vasudevan, T., Desalination, 164, 111 (2004).

[8] Richard W. Goeldner., Desalination, 47, 25 (1983).

[9] Shakkthivel, P., Ramesh, D., Sathiyamoorthi, R., Vasudevan, T., Journal of Applied Polymer Science, 96, 1451 (2005).

[10] Yong-Wook,  K.,   Jung-Gu,   K.,  Dong-Jin,  C., Materials and Corrosion, 52, 697 (2001).

[11] El-Shall, H.,  Rashad, M. M.,  Abdel-Aa, E. A., Crystal Research and Technology, 37, 1264 (2002).

[12] Amjad, Z., Zuhi, R. W., NACE International, Paper 02401, Corrosion (2002).

[13] Carey, W. S., Park, A. S., Donald, T. F., Libardo, A. P., US Patent 5378372 (1995).

[14] Yang, B., Tang, J., US Patent 5788857 (1998).

[15] Morizot, A. P., Neville, A., Journal of Colloid and Interface Science, 245, 40 (2002).

[16] Dong-Jin, C., Seung-Jae, Y. and Jung-Gu, K., Materials Science and Engineering A, 335, 228 (2002).

[17] Nowack, B., Water Research, 37, 2533 (2003).

[18] Drela, I.,  Falewicz, P.,  Kuczkowska, S.,  Water Research, 32, 3188 (1998).

[19] NACE TM0374-2001

[20] NACE TM 0397-2002

[21] Roques, H., Girou, A., WaterResearch, 8, 907 (1974).

[22] Gill, J. S.,  Nancollas, G. H.,  Journal of Crystal Growth, 48, 34 (1980).

[23] Kjellin, P., Holmberg, K., Nydén, M., Journal of Crystal Growth, 48, 34 (1979).

[24] Shinichi, T., Katrin, I. P., Joseph, L. K., Journal of Crystal Growth, 143, 261 (1994).

[25] Ferguson, R. J., Materials Performance, November 25 (1984).

[26] Thomas, D. M., Gudmundsson, J. S., Geothermics, 18, 5 (1989).

[27] Sung, H. L., Young, I. C., International Journal of Heat and Mass Transfer, 45, 4163 (2002).

[28] a) Kameli,  M.,  Moradmand,  M.,  Rahimi,  H., Esmaeili, N., Iranian Patent 27248, July (2001).
b) Mosayyeby, B., Kameli, M., Bahrami, G. R., Proceeding of 2nd Conference of Corrosion in Petroleum Industry, Tehran, Iran, 18-19 Feb. (2003).