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ABSTRACT: An accurate and dependable evaluation of the State of Charge (SOC) is required  

to maximize battery life and safety. The primary goals of this research are to identify dual-

polarization parameters and estimate SOC. Dynamic identification of model parameters and 

estimation of battery SOC are achieved by co-estimating recursive Chicken Swarm Optimization (CSO) 

and Grey Wolf Optimization (GWO) algorithms from real-time current and voltage measurement 

data. A dual-polarization model's projected voltage is nearly the same as the actual voltage to better 

depict the dynamic properties of the battery and the identification process. Adaptive noise variance 

updating techniques applied to the extended improve SOC estimates. As a result, the proposed 

technique is validated using Dynamic Stress Test (DST) data and a Federal Urban Driving Schedule (FUDS). 

During FUDS testing, an estimated error of less than 2% and a root-mean-square error  

of less than 0.01085 are observed. We discovered that the approach can withstand erroneous 

beginning SOCs and other measurement noise covariance in the robustness study. 
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INTRODUCTION 

Electric vehicles are now the primary mode of 

transportation because they are both environmentally and 

economically friendly [1]. The battery management 

system is a critical component of Electric Vehicles (EVs). 

Lithium-Ion Batteries (LIB) have become the most 

important component of EVs due to their high energy 

density and long service life. The State of Charge (SoC)  

of the Battery Management System (BMS) is a critical 

metric. Correct assessment can ensure charge/discharge 

safety and alleviate range anxiety in EVs. However, 
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because LIB is a nonlinear, time-varying system, directly 

measuring SoC is difficult, making its estimation a difficult 

task for BMS [2]. 

Batteries, unlike fossil fuels, require precise monitoring  

to improve performance, extend life, and improve battery 

management, particularly with large-scale battery packs. 

Vellingiri et al propose the LSTM hybrid convolution 

neural network in their studies to improve the performance 

of the renewable energy system for hybrid electric 

vehicles. [3] That the SoC has a direct impact on the 
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available battery capacity [4]. The range of a device  

is directly related to its battery capacity, and indirectly  

to its battery capacity. Sensors cannot detect SoC directly  

to avoid interference from the electrochemical process.  

As a result, estimation techniques based on observable 

parameters such as current or terminal voltage are needed 

to calculate its value. Because of their importance in terms 

of improving performance and battery life, the Battery 

Management System (BMS) and estimation of battery 

metrics such as SoC and SoH have been the focus of much 

recent research [5]. Real-time monitoring of battery 

utilisation necessitates the use of an efficient Battery 

Management System (BMS), which evaluates the battery 

state to ensure safe operation. In the literature, there are 

several approaches to building a BMS. The charge status 

of a BMS is an important factor in its performance. It is 

critical to accurately estimate the SoC in order to increase 

battery cycle life, improve energy management, reduce 

costs, and ensure the overall safety of the PV system. 

Because of the storage battery's nonlinear properties and 

intricate electrochemical interactions, obtaining an 

accurate online calculation of SoC is difficult. The SoC 

(state of charge) is a measurement of the remaining capacity 

of the battery. It is the ratio of a capacity's actual value  

to its notional value. There are several methods for 

estimating the SoC, each with advantages and 

disadvantages. Traditional methods, such as Coulomb 

counting, have been used because they are simple. This 

method has several flaws, including the accumulation of 

current measurement errors caused by disturbances and the 

requirement of prior knowledge of starting values for 

accurate results. Much effort has been expended in recent 

years to improve the accuracy of SoC estimations. 

Popular methods for calculating SoC include Ampere-

hour (Ah) counting and impedance testing [6, 7]. Their 

simplicity, low cost, and user-friendliness make them 

appealing, but their inaccuracy cannot be denied due to the 

sum of individual measurement mistakes that occur during 

integration. Temperature and time are additional factors when 

measuring impedance. Estimating the SoC may be done with 

the use of several AI methods, such as Adaptive Neuro-Fuzzy 

Inference Systems (ANFIS), Neural Networks (NN) [9-11], 

Fuzzy Inference Systems (FIS) [12,13], and Learning-Based 

Algorithms (LbAs). These methods are accurate enough 

 to use in practise without resorting to an overly exact battery 

model. Thus, the system is treated as a black box, and its state 

variables are calculated by looking at historical data. 

However, NN-based solutions need a lot of trustworthy 

training data and powerful technological hardware. It is 

common practise to utilise a supplementary algorithm, such 

an optimization method, in tandem with a fuzzy-based 

algorithm, such as one based on fuzzy sets of rules or 

membership functions, to increase its effectiveness. 

Plett invented the bar-delta filtering method in 2009  

to calculate the SoC of each battery cell as well as the average 

SoC of the battery pack. In reference, a two-time-scale 

Extended Kalman Filter (EKF) was used to estimate  

the pack's average SOC by comparing the SOC of 

individual cells to that of the "average battery" represented 

by a simulated circuit. If we use Plett and Dai's bar-delta 

filtering method to estimate the state parameters of each 

cell, the BMS will still have hundreds of delta filters 

running at any given time. In reference [16], passive 

equilibrium control for series battery packs was developed 

at the cell and module levels, and this was then used  

to create a multi-scale state estimation architecture based on 

the pack's "weakest cell." The SoC can be determined 

using the lowest voltage in the battery pack. 

To estimate battery pack SoC [17], a lumped parameter 

equivalent circuit model was developed that takes into 

account the inconsistencies between individual battery 

cells. AEKF was then used to estimate the SoC for the 

battery pack. Sun et al. developed an updated model of a 

battery pack that takes into account the fact that each of the 

many cells contains an element of uncertainty. To identify 

the nominal battery model, average capacity and average 

resistance are used as filters [18-20] Discovered  

a direct connection between the first overcharged and first 

over-discharged cells in a battery pack, which was used  

to calculate the state of charge of the battery pack. The 

battery is safe to use, but if this method is used, the State 

of Charge (SoC) of the battery pack may fluctuate during 

charging and draining [21]. Zheng and colleagues used  

a genetic algorithm to determine the best parameters for 

the equivalent circuit model; the total battery pack SoC 

was then calculated using a set of rules and thresholds 

derived from the AEKF method for estimating cell SoC.  

To calculate the SoC of each battery cell, this method 

requires time-consuming and complex AEKF matrix 

transformations. Those who built a Gaussian process 

regression prediction model and used an efficient feature 

selection strategy saw their SoC estimates improve even 
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more [22]. The lengthy calculation time of this method is a 

significant disadvantage. The neural network proposed  

in [23] considers the terminal current, voltage, state of 

charge, and surface temperature of the battery to predict 

the anode potential. Simulated data generated by a pseudo-

2D model with empirical validation and a two-state 

thermal model were used to train the model. Furthermore, 

[24] compared the precision and space requirements  

of three different NE potential estimation strategies.  

A Pseudo-2D model was used to generate test data in order 

to train a model. It is not necessary to study electrochemistry  

in depth or to spend a significant amount of time tweaking 

parameters in the model, as suggested by the data. A large 

amount of data is frequently required for successful model 

training. For example, a high-performance computer cluster 

across the country was used to train a neural network 

model. The NE potential estimate in these studies [23, 24] 

is not validated by experimental data, which is a disadvantage. 

Because a fractional-order model of the lithium-ion 

battery may provide a more accurate SOC estimate,  

a fractional-order adaptive EKF method based on the 

fractional-order model was developed [25]. An adaptive 

evolutionary algorithm was used to find the model parameters 

offline using the fractional-order model and the suggested 

double EKF estimate approach for lithium-ion batteries [26]. 

An adaptive fractional-order EKF was implemented using a 

variance updating method to speed up convergence and 

increase the robustness of SoC estimation [27]. The use of a 

fractional-order model to characterise the dynamic properties 

of lithium-ion batteries is now the dominant approach of SOC 

calculation based on Kalman filters [28,2 9]. 

According to research, the state of charge prediction of 

the battery management system is critical in electric 

vehicles. For the prediction of the SoC of the BMS system, 

various algorithms are used [3]. The convolution neural 

network combined with the LSTM is used in the reference 

[3]. Convolution neural networks are better suited to image 

processing data. All of the dataset values in this work are 

time series. The grey wolf algorithm and a hybrid deep 

learning algorithm are used in this study for chicken swarm 

optimization. The BMS system will benefit from the 

hybrid deep learning algorithm for SoC prediction. 

 

METHODOLOGY 

Modelling lithium-ion battery 

The dynamic properties of a battery can only be 

accurately described if a simple and reliable model 

structure for the battery is developed. A first-order 

Resistor-Capacitor (RC) model is the best option in terms 

of accuracy, robustness, and complexity. The RC model  

is made up of VOC, the internal resistance R0, and one RC 

parallel capacitance-resistance. I represents the load 

current, and V represents the terminal voltage of the 

battery. This is known as the Voltage of Open Circuit (VOC). 

The ohmic resistance R0 is used to measure the flow  

of electricity between electrodes, the separator, and  

the electrolyte. The charge transfer resistance and double-

layer capacitance between the electrolyte and the electrode 

are represented by R1 and C1. I1 is the mathematical 

representation of R1's current. The voltages V1 and V0 

represent the resistor-capacitor RC connection and R0, 

respectively. 

𝑉(𝑡) = 𝑉𝑜𝑐 − 𝑅1𝐼1 − 𝑅𝑜𝐼                  (1) 

𝐼1 =
1

𝑅1𝐶1
(𝐼 − 𝐼1)                    (2) 

𝑉1 =
1

𝑅1𝐶1
𝑉1 +

1

𝐶1
𝐼                    (3) 

 

Battery test procedure 

The dynamic properties of a battery can only be 

accurately described if a simple and reliable model 

structure for the battery is developed. A first-order 

Resistor-Capacitor (RC) model is the best option in terms 

of accuracy, robustness, and complexity. The RC model is 

made up of VOC, the internal resistance R0, and one RC 

parallel capacitance-resistance. I represents the load 

current, and V represents the terminal voltage of the 

battery. This is known as the Voltage of Open Circuit (VOC). 

The ohmic resistance R0 is used to measure the flow of 

electricity between electrodes, the separator, and the 

electrolyte. The charge transfer resistance and double-

layer capacitance between the electrolyte and the electrode 

are represented by R1 and C1. I1 is the mathematical 

representation of R1's current. The voltages V1 and V0 

represent the resistor-capacitor RC connection and R0, 

respectively. 

 

Dataset description 

The dataset is obtained from the work of [1] Electric 

vehicles of the future, hybrid electric vehicles, smart grids, 

and microgrids all need electrochemical Energy Storage  
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Table 1: Dataset for the Road condition 

Cycle Training Testing 

Cycle 1 ARB 1640s Rest 600s 

Cycle 2 Rest 1200s FTP 2478s 

Cycle 3 Rep 1401s SC03 601s 

Cycle 4 Rest 1200s UDDSHDV 1061s 

Cycle 5 US06 601s Rest 1800s 

Cycle 6 SC03  601s REP05  1401s 

Cycle 7 Rest 1200s SC03 601s 

Cycle 8 HWFET 766s UDDS 1370s 

Cycle 9 Rest 1200s Rest  600s 

Cycle 10 UDDS 1370s Constant  1800s 

Cycle 11 Rest 1200s Rest 1800s 

Cycle 12 OCC 1910s UNIF01  1931s 

Cycle 13 Rest 1200s FTP 2478s 

Cycle 14 HWFET_MNT 766s HWFET 766s 

Cycle 15 Rest 1200s OCC  1910s 

Cycle 16 Charging NYCC 599s 

Cycle 17 Rest 1200s Rest 3600s 

Cycle 18 VEIL2NREL 5915s  

Cycle 19 Rest 1200s  

 

Systems to be used effectively (ESSs). Additionally, 

BMSs are essential for monitoring, maintaining, and even 

regulating the battery pack itself. A BMS must be able to 

determine the state of charge of the ESS cells. Most 

promising are model-based approaches, such as extended 

or unscented Kalman filters. First, the models must give 

helpful insights into cell physics to expose specifics of the 

SoC; second, they must approximate all nonlinear 

interactions between important physical parameters and 

provide the most flexibility in defining the system. In 

addition, this property eliminates the need for time-

consuming and specialized tests when fine-tuning the 

model. So that novel models and associated system 

identification methods may be tested and evaluated, the 

data set includes a wide and realistic application of 

electrochemical cells. Self-created and programmed 

battery cyclers have been used to gather the data set 

autonomously, mimicking the functioning of electrochemical 

cells in an electric vehicle. These results were obtained 

using a battery pack similar to that seen in Nissan's Leaf 

electric vehicle, which was powered by a lithium polymer 

cell model ePLB C020. The particular cell had an effective 

capacity of 15 Ah, which was relevant to the acquisition 

endeavor. It is planned to construct the Training and  

 
Fig. 1: Methodology adopted in the study 

 

Testing Sets in two trips. Both itineraries were meant to 

reflect a realistic driving situation by including urban, extra-

urban, and highway driving cycles, as well as rests and battery 

charging intervals. Drive cycles from the Federal Test 

Procedure repository have been chosen to approximate a 

typical cell's use. Data from a 277.64-kilometer voyage and a 

163.24-kilometer excursion, totalling roughly 12 hours, are 

used for training and testing, respectively. It was possible to 

examine the SoC sequence with a one-second sampling 

interval by using the Coulomb counting approach. The 

battery pack data analysed in this research include the New 

European Driving Cycle (NEDC), Federal Urban Driving 

Schedule (FUDS), the Dynamic Stress Test (DST), and the 

Urban Dynamometer Driving Schedule (UDDS). During 

each driving cycle, some measures are taken on the battery 

pack. These contain measurements of the battery pack's total 

voltage and trunk current, as well as its discharge capacity and 

the energy it has been able to discharge. It's a huge amount of 

data that the battery pack gathers. The data regarding the road 

condition is shown in Table 1. Using battery voltage models 

to determine SoC is currently the most used method. Batteries 

When it comes to electrical voltage modeling, SoC is often 

seen as a model that specifies the parameters [17]. It is 

common to characterize OCV as a monotonic function  

of SoC in comparable circuit models [20] or fractional order 

models [30]. Calculating the SoC is easy after the OCV  

is determined.  
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Fig. 2: Flow diagram of the proposed hybrid CWO-GWO algorithm 

 

Proposed forecasting Method 

Single-stage forecasting can be used for a specific 

period, but it cannot be used for multi-time-scale 

prediction. Furthermore, sharing data at multiple time 

scales is valid on an excellent forecasting resource. 

These are the primary reasons for proposing a new 

technique for performing multi-time scale anticipating 

models. EV battery forecasting models use available data 

to predict SoC across a range of time scales. Because data 

used for short-term forecasting cannot be used for long-term 

forecasting, the duration of each task is determined by 

 the availability of battery output data. It is possible to meet 

several forecasting needs in this chapter using hourly 

irradiance data; however, due to a lack of data, this cannot 

be done in a single-stage model. 

 

Proposed hybrid CSO-GWO optimization algorithm  

The absence of a more optimal compromise between 

the algorithm's exploratory and exploitative capabilities is 

the main challenge for swarm intelligence systems. The 

population's capacity for a worldwide search is defined  

by the exploration ability, which is the prey identification 

process of an individual within the population. Once  

the quarry is located, the exploitation capability allows  

the whole populace to work together to feast. Premature 

convergence, delayed convergence, local stagnation,  

local optimum and global optimal entrapment, etc. are  

all problems plaguing population-based algorithms.  

 
Fig. 3: Output voltage of the battery train and test data 

 

 
Fig. 4: Measured current of the battery train and test data 

 

Two algorithms are combined in the suggested model  

to deal with these complications: the CWO optimizer, 

which excels at exploration, and the GWO, which excels 

in local hunting. Additionally, there is a social behaviour 

parallel between the two algorithms in the form of a three-tiered 

hierarchy. 

 

RESULTS AND DISCUSSION 

The most important operational characteristic of an electric 

vehicle is its estimated battery state of charge. The steps 

involved in the battery analysis are depicted in Figs. 3  

and 4. The data was provided by McMaster University  

in Hamilton, Ontario, Canada. The characteristics of the battery, 

such as voltage, current, and temperature, are used to select 

the features. A standardised set of battery voltages, 

currents, and temperatures results from reduced variability 

during training and a faster training procedure.  

The research in this study considers the speed 

characteristics of electric vehicles. An emission cycle 

based on UDDS, a LA92 cycle, and SFTP are being used 

as part of the investigation into the accuracy of  

the proposed method for estimating SoC. To forecast  
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Fig. 5: LSTM and Measured SoC Prediction 

 

 
Fig. 6: CSO-LSTM and Measured SoC Prediction 

 

the battery SoC, algorithms such as LSTM and hybrid 

LSTM CSO-GWO are used. 

In the study, three approaches are used to assess  

the accuracy of SOC estimations: CSO, GWO, and  

a hybrid CSO-GWO LSTM. It is worth noting that the new 

FF-RLS technique is used to identify all of the battery 

properties that are used to estimate SOC. To begin, the test 

battery is fully charged using the CC-CV charging method. 

When the terminal voltage reaches 2.75 V, the current 

profiles recorded with the Urban Dynamometer Driving 

Schedule (UDDS) are applied repeatedly. Figs. 3 and 4 

show the test and training data for voltage and current. 

The most important operational characteristic of an electric 

vehicle is the estimated battery state of charge.  

The steps involved in the battery's analysis are depicted  

in Figs. 3 and 4. The data was supplied by McMaster 

University in Hamilton, Ontario, Canada. The features are 

chosen based on battery characteristics such as voltage, 

current, and temperature. A standardised set of battery 

voltages, currents, and temperatures is produced as a result 

of reduced variability during training and a faster training 

procedure. The speed characteristics of electric vehicles 

are considered in this study's research. An emission cycle 

based on UDDS, a LA92 cycle, and SFTP is being used  

as part of the investigation into the accuracy of  

the proposed method for estimating SoC. To forecast 

the battery SoC, algorithms like LSTM and hybrid 

LSTM CSO-GWO are used. 

Three approaches are used in the study to assess the 

accuracy of SOC estimations: CSO, GWO, and a hybrid 

CSO-GWO LSTM. It is worth noting that the new FF-RLS 

technique is used to identify all of the battery properties 

that contribute to SOC estimation. To begin, the CC-CV 

charging method is used to fully charge the test battery. 

When the terminal voltage falls below 2.75 V, the current 

profiles recorded with the urban dynamometer driving 

schedule (UDDS) are applied repeatedly. Figs. 3 and 4 

show the voltage and current test and training data. 

The most accurate of these four filters is the AHIF. 

Rather than making assumptions about the statistical 

properties of noise, as required by Kalman filters,  

the AHIF suppresses interference norms into a defined 

range, allowing observers to solve constrained signals 

and significantly increasing their resilience. Accurate 

estimation provides reliable basic knowledge for SOC 

singularity analysis. If the RMSE, maximum absolute 

error, and mean absolute error are all less than 1%,  

a singularity can be avoided. Table 2 compares the SOC 

estimate errors based on various models to validate  

the efficacy of our proposed strategy. The maximum 

absolute error and Root Mean Square Error (RMSE)  

of the CSO algorithm are 5.6 percent and 2.57 percent, 

respectively, which are higher than those of the suggested 

technique. Furthermore, the proposed technique outperforms 

the reduced-order electrochemical model in terms  

of convergence time. The overall convergence time  

of a reduced-order electrochemical model using the A-SPKF 

algorithm is about one-fourth that of the proposed 

technique, but the electrochemical model takes 123 s to 

reach its reference value. Finally, the comparisons show 

that the proposed technique outperforms the majority  

of previously published electrochemical model-based 

methods. 

Using the proposed fusion estimation approach,  

the proposed SOC estimating technique is tested on cells 

of varying ageing states. The test battery is charged using 

the CC-CV charging technique until the terminal voltage 

drops to 2.75 volts at room temperature. The first step  

in determining the battery's SOH is to extract the unique 

characteristics of the charging process. When the battery 
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Table 2: Performance metrics of battery at various drive cycles 

Drive cycles Algorithm MSE RMSE NRMSE MAE MAPE R 2 

 CSO 0.0298 0.156 0.22127 0.013 0.00018 0.9945 

UDDS GWO 0.0245 0.145 0.214 0.012 0.00014 0.956 

 CSO-GWO 0.021 0.125 0.2065 0.011 0.00012 0.945 

 CSO 0.0157 0.1154 0.1724 0.00323 0.00019 0.9978 

LA92 GWO 0.6125 0.2325 0.424 0.01421 0.00071 0.965 

 CSO-GWO 0.0100 0.100 0.142 0.00221 0.00009 0.9425 

 CSO 0.02256 0.1354 0.1984 0.0154 0.00050 0.99410 

US06 GWO 0.04586 0.2154 0.3054 0.04632 0.00225 0.954 

 CSO-GWO 0.00302 0.05234 0.08754 0.00325 0.00018 0.9932 

 
Fig. 7: GWO-LSTM and Measured SoC Prediction 

 

 
Fig. 8: hybrid GWO-CSO-LSTM and Measured SoC Prediction 

 

runs out of power, the updated capacity is used to calculate 

the SOC. In this scenario, SOC is set at 20% for all aged 

cells, and the difference is clearly 80 percent. The SOC 

estimate findings for aged cells are shown in Fig. 8 and 

Table 2. To keep things simple, we'll just talk about four 

levels of old age: 97 percent alive, 93 percent alive,  

88 percent alive, and 85 percent alive. As can be seen, the 

total discharge time decreases with time as the battery ages 

under the same conditions. The algorithm's ability to 

handle ageing cells has been demonstrated by its ability to 

generate accurate SOC estimates across a range of ageing 

states. For four distinct SOH statuses, there is a 60-30% 

SOC estimation error; this is the largest range of SOC 

estimation error. As illustrated in Fig. In this range,  

the relationship between SOC and OCV is very flat (c). 

Under these conditions, the suggested technique's SOC 

estimate error is limited to 1.2 percent. The final battery 

characteristics shown in Fig. 1 are OCV, ohmic resistance, 

polarisation resistance, and time constant. 8(c)- (f). The 

OCV curves show a noticeable variation as the battery 

ages. When the SOC drops from 60% to 4%, the OCV 

drops by 0.016 V, resulting in a 1.4 percent error 

in the SOC estimate. However, the battery's properties 

change noticeably as it ages. The ohmic resistance  

in the intermediate SOC area is very small and develops slowly, 

whereas the ohmic resistance in the lower SOC area rises 

quickly and is usually greater than the ohmic resistance  

in the higher SOC area. Globally, as SOH decreases,  

the ohmic resistance increases. The same is true of 

resistive polarisation. This means that, as the ageing 

process progresses, a real-time update of battery properties 

is required to improve SOC computation. Based on these 

comparisons, it is clear that the proposed SOC estimation 

technique works well across a wide range of life cycles. 

Fig. 9 depicts the various algorithms' performance metrics. 

The working conditions of UDDS, LA92, and SFTP, 

which indicate the real consumption of power batteries, 

can be used to validate SoC battery estimations. Under 

UDDS, LA92, and SFTP, the automobile must also 

accelerate or split. Fig. 2 depicts the normalised battery 

voltage input feature. The variation in battery current  

is depicted in Fig. 3. If the current rate is out of control, 

limit values should be used. During testing, the current 

sensor and voltmeter can measure the current and voltage 
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Table  3:  globally reported feature selection of the SoC prediction  

Feature Parameter Battery Performance index & Precision Reference 

(current, voltage) NASA 18650 MAE <1.29% [31] 

Temperature NASA 18650 RMSE <3.58% [32] 

charging voltage curve NASA 18650 RMSE <3.45% [33] 

discharging voltage curve NASA 18650 RMSE <3.84% [34] 

charging curve NCM/ graphite RMSE 2% [35] 

discharging curve NASA 18650 MAE <1.29% [36] 

peak, valley Prismatic Li-ion Battery RMSE 2.99% [37] 

(current, voltage) NASA 18650 RMSE <1.1% Present study 

 
Fig. 9: performance metrics of the Hybrid, CSO, GWO LSTM 

of the optimization algorithm 

 

of the battery cells in real time. It is connected to  

a thermocouple, which sends temperature data to a test 

system on the battery module. The test assumes that  

the lithium battery in the electric vehicle is charged  

in a stationary environment and operates at varying 

ambient temperatures throughout the experiment. The battery 

is now being charged at a rate of 15.5 amps per volt for  

a total of 15.5 amps (4.2 V). Fig. 4 depicts the standard 

lithium battery cell testing temperatures of 0, 10, and 25 

°C, which are consistent with the previously discussed 0 to 

25 °C temperature range. The battery module testing 

equipment is used to compute SoC reference values.  

The surface temperatures of the first battery cell are nearly 

identical when the ambient temperature is 25 degrees 

Celsius.  

The temperature of the battery rises differently during  

a high-current-rate discharge. Temperature and temperature 

change are not synonymous. Because UDDS, LA92, and 

SFTP all operate in a single operational state, the battery 

temperature does not change significantly. As the SoC 

level is reduced, battery temperatures rise. 

Fig. 5 depicts the SoC estimates of the impacts of 

UDDs, LA92, and SFTP on Algorithms LSTM and CSO 

at 0°C operating temperatures. Table 2 also includes  

the selection and specification of MAE, RMSE, and SD  

for SoC estimate error analysis. Estimated SoC results 

from multiple techniques work quite well at 0°C.  

If the temperature is not taken into account when using 

UDDS mode, SoC estimate errors increase over time. 

The SoC calculation results show an apparent 0°C 

difference [38-44]. 

The battery discharge characteristics change the LSTM 

assessment technique findings by a small margin at low 

temperatures. SoC estimation during the LA 92-error can 

be easily maintained and kept to zero degrees Celsius if the 

suggested combination approach is used. The LSTM 

estimator has a SoC error of 3%, which is consistent with 

the previous estimate. The GWO method's error rate 

increases over time in the SFTP drive loop. The estimator 

will be able to better monitor the true SoC value using this 

estimating strategy. The LSTM estimator also provides  

a wide range of errors that are within the acceptable  

range [45-50]. Table 3 compares the previously reported 

literature with the respective algorithm. 

 

CONCLUSIONS 

This study examines battery deterioration and dynamic 

operating temperatures using an adaptive fusion approach. 

An improved online identification technique based on  

an improved recursive least square method with the 

forgetting factor can identify model parameters over  

a wide temperature range. The battery's state of charge  

can be more accurately assessed using the least squares 

support vector machine approach. We can estimate that the error 

is less than 2% as a result of the tests. To analyse the charge 

status, the adaptive H-infinity filter is presented, which  

is based on a constantly updated state of health and  
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an accurate battery model. Although all three of these 

algorithms are widely used, the one we developed 

outperforms them in terms of accuracy, speed, and 

sensitivity to environmental factors such as temperature 

shifts and battery deterioration. Following a thorough 

investigation, the method was discovered to have a wide 

range of applications in the evaluation of lithium-ion 

battery state-of-charge and health. It is also possible that 

the proposed method will aid in predicting the state of 

affairs of the charge singularity. As battery management 

systems improve at predicting the state of charge,  

the residual state of charge threshold for singularity 

prediction accuracy may be reduced. The relationship 

between charge state evaluation and singularity prediction 

will be investigated further. The method will be evaluated 

in electric vehicle battery packs on a printed circuit board 

controller to validate the design's battery management 

system estimation performance. Additional research is required 

to determine how to deal with temperature and capacity 

discrepancies across cells in a pack and provide an official 

estimate. 
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