Experimental Investigation of Phase Inversion of Liquid-Liquid Systems in a Spray Extraction Column

Document Type: Research Note

Authors

1 Nuclear Science Research School, Nuclear Science and Technology Research Institute, Tehran, I.R. IRAN

2 School of Chemical Engineering, University College of Engineering, University of Tehran, Tehran, I.R. IRAN

Abstract

An experimental study of the phase inversion behavior of liquid-liquid dispersion has been conducted in a spray extraction column for systems of toluene / water, n-hexane/water, CCl4/water, toluene /water + glycerol (25 % wt), toluene + CCl4 (25 % wt) / water and toluene / acetic acid (5 % wt)/water. The effects of physical properties, mass transfer and column geometry on phase inversion have been investigated. The results show that the dispersed phase hold up sufficient for phase inversion increases in o/w dispersion and decreases in w/o dispersion by increasing interfacial tension. Also, it was found that by increasing the viscosity of aqueous phase, dispersed phase hold up decreases at phase inversion point in both o/w and w/o dispersions. The tendency to phase inversion increases in o/w dispersion with an increase in density difference of two phases. It was observed that dispersed phase hold up at phase inversion point decreases in the presence of mass transfer, when the direction of mass transfer is from dispersed phase to continuous phase. The results show that dispersed phase holdup increases with drop size at phase inversion point and column diameter has an important effect on phase inversion because of wall effect.

Keywords

Main Subjects


[1] Yeo, L.Y., Matar, O. K., Perez de Ortiz, E. S., Hewitt, G. F., Multiple Phase Sci. and Tech., 12, p. 51 (2000).
[2] Liu,  L.,  Matar  O. K.,  Perez  de Ortiz, E. S. and Geoffrey, F., Chem. Eng. Sci., 60, p. 85 (2005).
[3] Tsouris, C. and Dong, J., Chem. Eng. Sci., 55, p. 3571, (2000).
[4] Arashmid, M. and Jeffreys, G.V., AIChE J., 26, p. 51, (1980).
[5] Tidhar, M., Merchuk, J. C., Sembira, A. N. and Wolf, D., Chem. Eng. Sci., 41, p. 457 (1986).
[6] Gilchrist, A., Dyster, K. N., Moore, I. P., Nienow, A. W. and Carpenter, K.Y., Chem. Eng. Sci., 44, p. 2381 (1989).
[7] Yeo, L.Y., Matar, O. K., Perez de Ortiz, E. S. and Hewitt, G. F., Chem. Eng. Sci., 57, p. 1069 (2002).
[8] Selker, A. H. and Sleicher, C. A., Can. J. Chem. Eng., 43, p. 298, (1965).
[9] Luhning, R.W. and Sawistowski, H., ISEC71, p. 873 (1971).
[10] Efthimiadu, I., Kocianova, E. and Moore, I. P. T., Proceeding of the 1994 IChemE Research Event, Vol. 2, pp. 1020-1022 (1994).
[11] McClary, M. J. and Mansoori, G. A., AIChE Symp. Series No.173, 74, p. 134 (1978).
[12] Clake, S. I. and Sawistowski, H., Trans. IChemE., 56, p. 50 (1978).
[13] Kumar, S., Kumar, R. and Gandhi, K. S., Chem. Eng. Sci., 46, p. 2365 (1991).
[14] Norato, M. A., Tsouris, C. and Tavlarides, L. L., Can. J. Chem. Eng., 76, p. 486 (1998).
[15] Brauner, N. and Ullmann, A., Int. J. Multiphase Flow, 28, p. 1177 (2002).
[16] Deshpande, B. K. and Kumar, S., Chem. Eng. Sci., 58, p. 3829 (2003).
[17] Sarkar, A., Philips, C. R., Munford, C. J. and Jeffreys, G. V., Trans IChemE, 58, p. 43 (1980).
[18] Kato, S., Nakayama, E. and Kawasaki, J., Can. J. Chem. Eng., 69, p. 222 (1991).
[19] Reeve, R. N. and Godfrey, Y. C., Trans. IChemE, 80, p. 864 (2002).
[20] Chesters, A. K., Chem. Eng. Res. Des. (Part A), 69, p. 259 (1991).
[21] Yeh, G. C., Haynie Jr., F. H. and Moses, R. A., AIChE J., 10, p. 260 (1964).
[22] Hu, B., Ioannou, K., Matar, O. K., Perez de Ortiz, E. S., Hewitt, G. F. and Angeli, P., 3rd International Symposium on Two-Phase Flow Modeling and Experimentation, Pisa, Sep. 2004, pp. 22-24 (2004).
[23] Groothius, H. and Zuiderweg, F. J., Chem. Eng. Sci., 12, p. 288 (1960).
[24] Gourdon, C. and Casamatta, G., Chem. Eng. Sci., 46, p. 2799 (1991).