Microwave Assisted Rapid, Efficient and Chemoselective Deoxygenation of Sulfoxides to Thioethers Using Zn / AcOH on Silica Gel

Document Type : Research Article

Authors

Faculty of Chemistry, Tarbiat Moallem University, Tehran, I.R. IRAN

Abstract

Zn/AcOH on silica gel converts a range of structurally different sulfoxides to their corresponding thioethers in excellent yields under microwave irradiation. It has been found that chemoselective deoxygenation of sufoxides can be achieved in the presence of other reducible functional groups such as acetals, acids, amides,   esters, ketones and nitriles.
 

Keywords

Main Subjects


[1] Soladie, G., Synthesis, 185 (1981).
[2] Carreno, M. C., Chem. Rev., 95, 1717 (1995).
[3] Davies, S. G., Loweridge, T. and Clough, J. M., Synlett,  66 (1997).
[4] For Reviews on Sulfoxides See: Madesclaire, M., Tetrahedron, 44, 6537 (1988).
[5] Drabowicz, J., Numata, T. and Oae, S., Org. Prep. Proced. Int., 9, 63 (1997).
[6] Kaczorowska, K., Kolarska, Z., Mitka, K. and Kowalski, P., Tetrahedron, 61, 8315 (2005).
[7] Kowalski, P., Mitka, K., Ossowskab, K. and Kolarska, Z., Tetrahedron, 61, 1933 (2005).
[8] House, H. O., “Modern Synthetic Reactions”, 2nd Ed., Cummings, Benjamin, California, pp. 15, 16, 215 (1972).
[9] Kikuchi, S., Konishi, H. and Hashimoto, Y., Tetrahedron, 61, 3587 (2005).
[10] Ana, C., Fernandes, A. C. and Romao, C. C., Tetrahedron, 62, 9650 (2006).
[11] Hua, G. and Woollins, J. D., Tetrahedron Letters, 48, 3677 (2007).
[12] Firouzabadi,  H. and  Karimi, B.,  Synthesis, 500 (1999).
[13] Cintas, P., Activated Metals in Organic Synthesis, CRC, Boca Raton, (1993).
[14] Fujiwara,  Y.,  Ishikawa,  R.,  Akiyama,  F. and Teramishi, S., J. Org. Chem., 43, 2477 (1978).
[15]  Sharpless,  K. B., Umbreit,  M. A.,  Nieh, M. T. and Flood, T. C., J. Am. Chem. Soc., 94, 6538 (1972).
[16] McMurry, J. E. and Fleming, M. P., J. Org. Chem., 40, 2555 (1975).
[17] Drabowicz, J. and Mikolajczyk, M., Synthesis, 527 (1976).
[18] Drabowicz, J. and Mikolajczyk, M., Synthesis, 138 (1978).
[19] Baliki, R., Synthesis, 155 (1991).
[20] Akita, Y., Inaba, M., Uchida, H. and Ohta, A., Synthesis, 792 (1977).
[21] Nuzzo, R. G., Simon, H. G. and  Sanfilippo, J., J. Org. Chem., 42, 568 (1977).
[22] Tanaka,  K. and  Toda,  F.,  Chem. Rev.,  100, 1025 (2000).
[23] Perreux, L. and Loupy, A., Tetrahedron, 57, 9199 (2001).
[24] Varma, R. S., Green Chemistry, 43 (1999).
[25] Gedye, R. N., Smith, F., Westaway, K., Ali, H., Baldisera, L., Laberge, L. and Rousell, J., Tetrahedron Lett., 27, 279 (1986).
[26] Loupy, A., Petit, A., Hamelin, J., Texier Boullet, F., Jacquault, P. and Mathe, D., Synthesis, 1213 (1998). 
[27] Russel, G. A. and Mikol, G. J., J. Am. Chem. Soc., 88, 5498 (1966).
[28] Shockravi, A., Alizadeh, R., Aghabozorg, H., Moghimi, A., Rostami, E. and Tabrizi, S. B., Phosphorus, Sulfur, Silicon and Related Element, 178, 2519 (2003).
[29] Shockravi, A., Rostami, E., Dehjurian, A., Tohidi, R. and Tabrizi, S. B.,  Phosphorus, Sulfur, Silicon and Related Element, 179, 535 (2004).
[30] Shockravi, A., Tabrizi, S. B., Rostami, E., Yousefi, A., Dehjurian, A. and Tohidi, R., J. Inclusion Phenomena, 49, 163 (2004).
[31] Shockravi, A. and  Tabrizi, S. B., J. Inclusion Phenomena, 52, 223 (2005).
[32] Shockravi, A.,  Rostami, E. and Zakeri, M., Iran. J. Chem. Chem. Eng. 24, 47, (2005).
[33] Shaabani,   A.  and  Rezayan,  A.  H.,  Catalysis Communications, 8, 1112 (2007).
[34] Hosseinpoor, F. and Golchoubian, H., Tetrahedron Letters, 47, 5195 (2006).
[35] Jeyakumar, K. and Kumar Chand, D., Tetrahedron Letters, 47  4573 (2006).
[36]  Bahrami, K., Tetrahedron Letters, 47, 2009 (2006).
[37] Tohma, H., Takizawa, S., Watanabe, H., Fukuoka, Y., Maegawa, T. and Kita, Y.,  J. Org. Chem., 64, 3519 (1999).
[38] Tohma, H., Takizawa, S., Morioka, H., Maegawa, T. and Kita, Y.,  Chem. Pharm. Bull., 48, 445 (2000).
[39] Legros, J. and Bolm, C.,  Angew. Chem., Int. Ed., 42, 5487 (2003).