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ABSTRACT: Bacterial NanoCellulose (BNC), a unique and promising natural polymer, due to its 

renewability, excellent biological features, remarkable physical properties, and special surface 

chemistry has received much attention for biomedical applications in recent years. There are several 

methods for synthesizing BNC, each with its own set of benefits and drawbacks. Modification 

approaches are used significantly to improve the properties of BNC or BNC-based structures for 

long-term and short-term biomedical applications. The fabrication of BNC-based antimicrobial 

materials for wound dressings, drug delivery, and hard and soft tissue regeneration is a major 

concern of many researchers. A wide range of biomaterials such as antibiotics, metal, and metal 

oxide nanoparticles are used for preparing BNC-based antimicrobial structures.  In this review,  

we presented the main and necessary information on the key aspects of synthesis and BNC properties. 

Furthermore, recent literature related to the preparation and biomedical applications of BNC-based 

materials is reviewed. Aligned with the current trends in BNC, BNC-based biocomposites present 

a great field to be explored and other amazing characteristics can be expected in relation to soft  

and hard tissue repair, drug delivery, and other biomedical applications in the near future. 
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INTRODUCTION 

Nowadays, biopolymers such as proteins and 

polysaccharides, are being significantly used for 

producing advanced biomaterials. In a wide range of 

materials, Bacterial NanoCellulose (BNC) and its family 

members due to their unique properties such as 

biocompatibility, high liquid holding capacity, conformability,  

 

 

 

porosity, stability at room temperature and in wet 

conditions, high purity, high Young's modulus, and green 

processing are highly regarded as promising tools for 

clinical and biomedical applications. The existence of 

hydroxyl groups in BNC improves its compositing  

with other materials that create amazing structures  
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Fig.1: Schematic diagram of the biosynthesis of bacterial cellulose I and II from glucose and fructose[4]. 

 

with interesting properties such as electro-conductivity 

and antibacterial activity. Acetobacter xylinum is the best 

cellulose-producing bacterium that synthesizes and 

secretes cellulose as part of its metabolism of glucose. For 

BNC production, different carbon sources from the 

medium were used by bacteria to polymerize into β–1, 4–

glucan chain, then these chains transported outside the 

cells via the membrane pores. Subsequently, β–1, 4–

glucan chains formed subfibrils, then the subfibrils are 

crystallized into microfibrils, bundles and ribbons 

respectively. A large number of regulatory proteins and 

genes coding individual enzymes participate in this 

process [1, 2].  The Embden Meyerhof Parnas route, Krebs 

cycle, gluconeogenesis and phosphogluconate pathway are 

the most important metabolic processes for biosynthesis of 

BNC. The basis of the Krebs cycle is based on the 

oxidation of fats, proteins and acetate-derived 

carbohydrates while the oxidation of carbohydrate is the 

basis of the phosphogluconate cycle. There are four 

important and necessary enzymatic steps for BNC 

synthesis including a: conversion of glucose to glucose-6-

phosphate (Glc-6-P) via phosphorylation, b: isomerization 

of Glc-6-P to glucose- 1-phosphate (Glc-1-P) by 

phosphoglucomutase, c: producing uridine diphosphate 

glucose from Glc-1-P by UDP-glucose 

pyrophosphorylase, d: polymerization of UDP-glucose 

into β-1, 4 glucan chains (Fig. 1)[3]. BNC can be 

synthesized by several bacteria and under different culture 

conditions that determine its wonderful physicochemical 

properties and morphologies. BNC synthesis methods are 

influenced by various factors such as selection of source, 

types of bacterial strains, temperature, surface area and pH, 

presence of other microorganisms and shape of the 

bioreactor. Three important and common methods for 

BNC synthesis are:  agitated, static and bioreactor-based 

bacterial culturing[2]. Static culture produces gelatinous 

pellicles and in agitated culture system, irregular pellets 

suspended in culture medium are seen. The BNC produced 

by agitation fermentation shows low degree of 

polymerization, low level of crystallinity, low mechanical 

strength and yields, in addition, agitated culture has 

microbe mutations, but instead static culture needs a long 

culture period and high cultivation area. In the 

fermentation medium carbon source, phosphorus, 

nitrogen, sulfur, potassium and magnesium salts are 

necessary for synthesis process and many chemical agents 

affect significantly the synthesis of BNC. Fortunately, a 

cell-free enzyme method is used to manufacture BNC and 

this method can be used to produce large volumes of it. In 

cell-free enzyme system, BNC is produced through the 

anaerobic biosynthesis process with pellicles morphology 

and change to sheet-like structures at the air–liquid 

interface. In Table 1, the advantages and disadvantages of 

different methods are presented[2]. 
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Table 1: Comparison of several BNC production techniques. 

Production method Advantages Disadvantages Description References 

Static technique 
Simple method- No need for 

complicated tools 

longer fermentation time- 
pellicle and reticulated slurry 

forms of BNC affect its yield 

BNC is in the form of hydrogel 
sheet and is produced at the air-

liquid interface. 

[5] 

Agitated  technique 

Applicable for large production 
volumes-Increased delivery of oxygen to 

bacteria-Production of BNC in various 

sizes and shapes 

Low yield; Culture instability 

problems. 

In this method BNC is 
synthesized from the particle’s 

center and subsequently spreads 

outwards 

[6] 

Static intermittent fed- 
batch and repeated 

batch technique 

Easy method- Large scale productivity 
No appropriate monitoring of 

culturing conditions 

Fresh culture mediums increase 

pellicle  growth rate 
[7,8] 

Cell-free extract 

technique 

Simple and easy method- Enhanced 

yield 

Lack of control of synthesis 

process parameters 

Cell lysis releases necessary 

enzymes to the medium 
[9] 

bioreactor-based 
technique 

High yield- Efficient oxygen supply- 
Production of homogenous structures 

Requires careful control of 

synthesis conditions for high 

volume productions 

The bacteria are soaked in 

nutritional media and exposed  

to air 

[10] 

 

BNC is a pure material due to the absence of lignin and 

hemicellulose, therefore, it is introduced as a non-

genotoxic, non-cytotoxic and biocompatible polymer.  

Nevertheless, it is not degraded in the human body and 

doesn’t have suitable interaction with cells and 

biomolecules. To overcome these limitations, physical and 

chemical modification of BNC is necessary by using in situ 

and ex situ techniques. Changing the culture medium, 

carbon source and adding of other biomaterials are used 

for in situ modifications while chemical and physical 

treatment are commonly used for ex situ modifications of 

BNC [11, 112]. In Table 2, several modifications 

techniques of BNC and its properties and biomedical 

applications are summarized. 

 

Important Parameters Controlling BNC Production, 

Properties and Biomedical Applications 

There are several factors such as pH, temperature, 

cultivation condition and dissolved oxygen that 

extensively affect BC (Bacterial Cellulose) production and 

need to be optimized. Temperature: many studies 

confirmed that, a temperature range of 25 to 30 °C is  

the best for BNC production and 28 °C is so suitable for 

Acetobacter xylinum to produce BNC. Denaturation  

of the culture medium is seen at high temperatures, while 

cellular metabolism significantly decreases at low temperatures. 

In vitro studies confirmed that the optimum temperature 

for A. xylinum in static condition is in the range of 20-30 

°C. Maximum cellulose production by Acetobacter 

pasteurianus RSV-4 and Komagataeibacter xylinus  

B-12068 was at 30  °C.  It has been revealed that A. 

xylinum 0416 at 20  °C and 35  °C showed high growth 

rate without any lag phase.  The nucleic acids and proteins 

of bacterial cell can significantly be denatured at high 

incubation temperature, even in an ideal growth medium 

[34]. pH: neutral and acidic environment are so ideal for 

BNC production. During the synthesis process, production 

of compounds such as gluconic acid, acetic acid and lactic 

acid change significantly the pH of culture medium, 

therefore, the best pH for the BNC synthesis is in the range 

of 4–6[35]. Many researches showed that, the pH of 5.50 

had the best efficiency for Acetobacter xylinum [36, 37].  

It is known that the changes in pH can affect the 

biochemical reactions in the culture medium. Cellulose 

synthesis process is an energy-dependent process and the 

use of glucose as the only source of energy can extensively 

increase the formation of gluconate, which reduces the pH 

of the medium and limits the BC production [38]. Culture 

media: the main components of culture medium for BNC 

production are nitrogen, in the form of casein hydrolysate 

and peptone and carbon in the form of glycerol, starch, 

fructose, maltose and xylose [39]. The necessary 

nutritional components such as nitrogen concentration 

have strong effects on the yield of BC. Each bacteria needs 

the specific optimal conditions for the growth and its 

productivity depends on significantly to these condition. 

Another micronutrients such as ethanol, potassium and 

magnesium salts and disodium phosphate play an 

important role in BC production, which improve cellulose 

yield. There are two main methods that are frequently used 

for BC production, namely static method and agitation 

method. BC produced by static method is in the form of 

gelatinous pellicle at the air–liquid interface. This 

technique needs longer cultivation time and extensive  
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Table 2: Modifications of BNC and its properties and biomedical applications. 

Modification with… Biomedical applications Resulting properties References 

Glycidylmethacrylate (GMA) Wound dressings 
High resistance to the stress and strain- formation the dense thick 

network 
[13] 

Fibroblast cell line Soft tissue engineering 

Interaction between BNC and the 

proteins enhanced the thermal stability of the proteins and reduced 

the onset temperature of BNC 

[14] 

Iron oxide nanoparticles Blood vessels A structure with a Young's modulus similar to blood vessels [15] 

Chitosan Antibacterial applications 
The presence of chitosan in composite structures inhibited protein 

synthesis in bacteria 
[16] 

Gelatin Bone tissue engineering 

Modification increased mechanical strength of scaffold with the 

best adhesion, viability, proliferation and osteogenic 
differentiation of the hBMSCs 

[17] 

Sesamum Oil Wound Dressing 
decrease in layer wettability, considerable antibacterial property 

against gram-positive and -negative bacteria 
[18] 

Hyaluronic acid and gelatin 
Stem cell therapy 

applications 

The scaffolds showed high cell adhesion and the cells distributed 

within the fibers 
[19] 

Soy protein Bone tissue engineering 
Modification caused the scaffold became more stretchable and 

increased degradation rate with suitable cytocompatibility 
[20] 

Ethylenediamine 
Manufacturing 3D bioactive 

scaffolds 
Modified scaffolds presented high bioactivity and improved  the 

absorption of the deposited CaO 
[21] 

Hyaluronic acid Dental materials scaffolds 
Modified scaffolds showed suitable interaction with calcium 

phosphate 
[22] 

Gelatin Skin regeneration 
Modified structure showed good adhesion and proliferation of 

human keratinocytes 
[23] 

Sodium alginate 
Carrier system for controlled 

protein drug delivery 

Modified composite was a promising tool for carrying hydrophilic 

protein-based drugs and did not exhibit any cell cytotoxicity. 
[24] 

Lithium chloride (LiCl), N,N-

Dimethylacetamide (DMAC) 

Membrane for Antibacterial 

and wound Healing 

Modified structures promoted wound healing through accelerating 

the re-epithelialization 
[25] 

KCl/HCl solution Dental applications 

Modified BNC can be used as a wound coverage for dental 

treatment and appropriate antibiotic efficiency by combination 

with doxycycline 

[26] 

Water-soluble poly(ethylene glycol) 
Anti-inflammatory drug 

delivery systems 

Modified structure increased loading capacity and accelerated drug 

release and improved transparency supports wound inspection 

through the dressing 

[27] 

Polyhydroxyalkanoates Bone tissue engineering 
Modified scaffolds supported 3T3-L1 preadipocytes proliferation 

and increased in vivo osteoblast differentiation 
[28] 

Alginate 

Localized doxorubicin 

release in human colorectal 
HT-29 cells 

Modification increased surface area of scaffolds and improved 

drug release rate 
[29] 

Chitosan Surgical meshes 
Modified BNC mesh does not irritate and sensitize and does not 
cause hypersensitivity in the implant site, and therefore shows a 

low risk of provoking such reactions in humans 

[30] 

TEMPO(2,2,6,6-

tetramethylpyperidine-1- oxyl) 
Hernia repairing 

The modified structure caused less inflammation and was 
surrounded by newly formed tissue and increased the expression of 

type I collagen in fibroblasts 

[31] 

Laser hole forming and selective 
oxidation 

Urethral repairing 

Modified BNC-containing composites with suitable mechanical 

strength and high cell interactions  are new urethral reconstruction 

materials in clinical applications 

[32] 

HOOC-PEG-COOH-coated iron 
oxide nanoparticles (PEG-IONs) 

Vascular tissue engineering 

The modified structures presented better adhesion and proliferation 

of endothelial cells with high potential for vascular tissue 

engineering. 

[33] 
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space for BC production, then had low productivity. In the 

agitated culture, the bacterial have enough O2 and nutrients 

to produce BC in the forms of pellets, irregular masses,  

or fibrous suspensions [40]. Another important component 

for the synthesis of cellulose, are vitamins such as 

pyridoxine, nicotinic acid, biotin and p-aminobenzoic acid 

that must be present in the culture medium to regulate 

cellular metabolism and growth. Oxygen Level: O2 plays 

an important role in BNC production. To achieve the 

highest yield of BC, O2 must be dissolved in the media. 

Lack of sufficient O2 not only impairs cellulose synthesis 

but also severely reduces the quality of BNC [36, 41].  

BNC presents superior and unique properties, which make 

it so attractive for biomedical applications. It possesses the 

nanofibrils 3D network which provide high mechanical 

strength and high surface area of BNC. Cytocompatibility 

and interconnected porous structure cause excellent wear 

resistance. BNC nanofibrillar structure and its 

polysaccharide nature reduce the immunogenicity of it. 

BNC shows nonenzymatic hydrolysis in vitro, while in 

human body it is non-degradable due to the lack of 

cellulases, therefore, BNC-based structures are so suitable 

for long-term applications. The various strategies are used 

to increase BNC degradation rate including oxidation and 

incorporation of cellulases within it. BNC biomedical 

applications significantly depend on its intrinsic properties 

and structures, then some of these properties are not 

suitable for every biomedical application and should be 

tailored for special use. BC porous structure allows loading 

of different drugs and various biomolecules within it. 

BNC-based membranes are used to prepare dermal patches 

due to their high mechanical strength that provides 

mechanical protection to the damaged sites, providing  

a moist environment, decreasing pain, prevention of the 

allergic reactions, absorbing excess exudate and easy 

replacement. In vitro and in vivo studies confirmed that, 

various nanoparticles, drugs, biomolecules, cells and 

biomaterials can be incorporated into BNC-based 

materials. High water holding ability of BNC makes it  

an excellent candidate for skin tissue regeneration.  It has 

been used to produce small-diameter vascular grafts, 

dental membrane, and dental cement, urethral and neural 

implants. In recent years acetylated BC coated with urinary 

bladder matrix has been used for adhesion and proliferation 

of retinal pigment epithelium cells. BNC is considered  

as a potential candidate for cornea replacement [42]. Many 

in vitro studies showed the BC could be used as a safe and 

biocompatible alternative to temporalis fascia with shorter 

surgery times and improved hearing [43].     

 

Antibacterial Activities of BNC Composites 

Antibacterial materials have been extensively used in 

tissue engineering and biomedical applications. As the 

number of antibiotic-resistant bacteria is increasing day by 

day, many studies about antimicrobial materials must be 

done to overcome the challenges of infection.  In recent 

years, BNC has attracted a lot of attention for antibacterial 

applications due to its wonderful physiochemical properties. 

There are 4 main and basic methods for manufacturing 

nanocellulose-based antimicrobial materials, including 

antibiotic addition, surface modification, combination 

with nanomaterials and combination with antibacterial 

polymers [44]. Each of these methods are described in next 

sections.  

 

Surface modification method 

There are two kinds of NC (nanocellulose) with 

suitable antibacterial property and high biocompatibility 

including aldehyde-NC and quaternized NC. BC, a linear 

polymer glucan, is composed of glucose units and β-(1–4)-

glycosidic bonds link these units. Hydroxyl groups present 

on cellulose surface make it easy to modify it with various 

functional groups such as phosphate, sulfate, amino and 

aldehyde.  2, 2, 6, 6-tetramethylpiperidine-1-oxyl 

(TEMPO)-NaBr- NaClO and NaIO4 are frequently used 

for oxidation of BNC. The oxidation process significantly 

changes BNC properties including retains the crystal 

structure of BNC, improves its degree of crystallinity, 

enhances its strength and toughness and also improves 

BNC degradability and protein adsorption capacity.  

It is confirmed that, oxidized BNC in contact with water 

molecules, shows suitable degradability with slow mass 

loss during the degradation process due to its dense and 

crystalline structure. C–O–C bonds in molecular chains of 

oxidized-BNC are broken by water molecules throughout 

the degradation process [45, 46]. The conventional process 

for synthesis of TEMPO oxidized BNC is based on the 

immersion of BNC sheets in sodium hypochlorite/ distilled 

water/ TEMPO solution. The mixture should be 

vigorously agitated using magnetic stirrer, then ethanol  

is used to quench the oxidation reaction and the BNC 

sheets must be washed with distilled water to remove all 
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of the reactants [47].  Many studies confirmed that, 

aldehyde-NC could accelerate wound healing and improve 

the formation of new blood vessels. The structures also 

presented high biocompatibility and high cell attachment 

that encourage growth of epidermal cells and wound 

regeneration. It should be noted that, many regents and 

solvents which are applied in this method are toxic and can 

affect the final products and reduce cytocompatibility, 

therefore using “green” oxidants is the best way to 

overcome this problem. Quaternary ammonium 

compounds due to their biocompatibility and antibacterial 

properties are extensively used for grafting to BNC. 

Grinding method and high pressure homogenization are 

used for quaternization the nanofibrillated cellulose. High 

pressure homogenization is so attractive for producing 

quaternized NFC with high mechanical strength, while 

grinding method damages the fiber and reduces the 

crystallinity. BNC-containing antibacterial materials can 

be produced by chemical reaction between BC and 

aminoalkyl groups, which are lethal to E. coli and no 

toxicity to human adipose-derived mesenchymal stem 

cells. Electrospinning of quaternized raw materials can 

significantly improve mechanical strength with amazing 

antibacterial activities [44]. 

 

The Addition of Antibiotic to NC 

In recent years, BNC-based composites are considered 

as promising tools for synthesizing antibacterial materials. 

Ceftriaxone, chloromycetin, ampicillin, and gentamycin 

are added to BNC to produce antibacterial materials. 

Clathration is the best method for controlling the release rate  

of antibiotics from NC-based antibacterial materials [44]. 

Lemnaru et al. prepared the solutions of bacitracin / 

amoxicillin in different concentrations, then immersed  

the freeze-dried BC specimens in them for absorption of 

drugs [48]. Tamahka prepared BC- Poly Vinyl Alcohol 

(PVA) - ampicillin composite hydrogel as a wound 

dressing. The drug molecules were loaded to composite  

by immersion the composite in the ampicillin solution  

at room temperature [49]. Liao et al. used poly (ε-

caprolactone)/cellulose acetate/dextran/ tetracycline 

hydrochloride electrospun composite mats for wound 

healing. Dextran and tetracycline hydrochloride were added  

to polymers solution prior to the electrospinning, then  

the composite solution was placed into a syringe for 

electrospinning [50]. Kui Ho et al. produced cellulose 

acetate nanoparticles via the nanoprecipitation process and 

loaded Penicillin G into them by immersion the 

nanoparticles in phosphate buffer saline (PBS, pH 7.4) and 

incubation for 72 h [51]. Adepu et al. used the polyethylene 

glycol 2000 for modification of BC and investigated 

modified BC properties and drug loading efficiency and 

drug release kinetics. Solvent evaporation technique was 

used for drug loading, in which the BC sheets were soaked 

in diclofenac sodium stock solution for 8 h [52]. Jantarat et al. 

prepared BC-Molecularly Imprinted Polymer (MIP) 

composites for sustained-release of quercetin. Molecularly 

imprinted BC was fabricated through the phase inversion 

method. BC was put in NaOH+urea solution and placed in 

the freezer for complete dissolution of BC. Quercetin was 

dissolved in methanol and added to BC solution to obtain 

a homogeneous mixture [53]. Shao et al. tetracycline 

hydrochloride was loaded into BC. BC was cut into small 

pieces and immersed in aqueous tetracycline hydrochloride 

solution with different concentration and stirred at dark 

condition. The samples were rinsed with de-ionized water 

and freeze-dried at -40 ºC for further studies [54]. In Fig. 2, 

the commonly used antibiotics are presented. In Table 3, 

all kinds of antibiotics which are used for preparing BNC-

based antibacterial structures are shown. 

 

Combination with Nanomaterials 

In recent years, nanotechnology has a significant 

effects on human life. Nanoparticles have unique 

characteristics and can be used for many aims. The used of 

them in microbiology and biomedical applications due to 

their excellent biological, physical and chemical properties 

has been developed. Various types of metal and metal 

oxide nanoparticles show antimicrobial activity against 

both Gram-positive and Gram-negative bacteria and are 

extensively used for production of BNC-based 

antibacterial materials. Silver and gold nanoparticles due 

to their low-toxicity, high surface area and high surface 

modification ability are so attractive for preparing 

antibacterial structures. The performance of gold 

nanoparticles is similar to applying pressure to a balloon, 

with areas of the cell wall stretching and deforming at 

different points until the bacteria exploded. It has been 

confirmed that, spherical nanoparticles damaged the 

bacteria more effectively and rapidly. Silver nanoparticles 

aggregates are very common, which can change their 

antimicrobial activity, but the combination of these  
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Table 3: Common used antibiotics for producing BNC-based antimicrobial materials. 

Antibiotics Bacterial species References 

Ceftriaxone S. aureus [55] 

Amoxicillin Staphylococcus aureus - Escherichia coli [48] 

Ceftriaxone Staphylococcus aureus [56] 

Dexpanthenol Staphylococcus aureus [57] 

Gentamycin Escherichia coli- Klebsiella pneumonia- Staphylococcus aureus- Streptococcus mutans [58] 

Povidone iodine -Polihexanide Staphylococcus aureus [59] 

Gentamicin E. coli - S. aureus [60] 

Ampicillin S. aureus- P. aeruginosa- E. coli- E. faecalis [61] 

Amoxicillin Fungus- Gram-negative- Gram-positive bacteria [62] 

Tetracycline hydrochloride Escherichia. coli- Staphylococcus aureus- Bacillus subtilis- Candida albicans [54] 

 

nanoparticles with BNC significantly improves their 

dispersion pattern. Furthermore, silver ions will block the 

bacterial respiratory system and thereby destroy the energy 

production of the cell. In the end, the bacterial cell 

membrane will burst, and the bacteria will be destroyed 

[63]. Many studies have examined the antibacterial effect 

of metal oxides such as titanium dioxide (TiO2), copper 

oxide (CuO), zinc oxide (ZnO), and magnesium oxide 

(MgO). Important parameters such as crystal structure, 

shape, and size significantly affect antimicrobial property 

of TiO2. Illumination of TiO2 produces highly oxidizing 

free radicals that oxidize and inactivate microbes. TiO2-

coated surfaces have shown lowered bacterial load. The 

radicals do not induce antimicrobial resistance, an 

important cause of concern in the medical context. TiO2 is 

non-toxic and chemically stable and is currently used for 

implants. CuO nanoparticles interact closely and strongly 

with bacterial membranes and damage their DNA and vital 

enzymes. ZnO has strong and effective antimicrobial 

properties against a wide range of pathogens. ZnO and 

MgO nanoparticles can cross microbe membranes, disrupt 

metabolic pathways, change membrane shape, deactivate 

vital enzymes and proteins, and increase oxidative stress 

in bacterial cells. The photocatalytic property of ZnO 

nanoparticles have been confirmed in recent years and they 

are more biocompatible than TiO2. Photocatalytic reactive 

oxygen species (ROS) production is the main responsible 

for killing the bacteria. UV light increases ROS 

production, and these productions damage lipids, proteins, 

vital enzymes and nucleic acids [64]. In Fig.3, several 

useful antimicrobial nanoparticles and their mechanisms 

are presented.   

 

Combination with Antibacterial Polymers 

Natural polymers with inherent antimicrobial activity 

are attractive candidates for use in biomedical applications. 

The cationic charge and hydrophobicity of these polymers 

play essential roles in their antibacterial activity. Cationic 

polymers combat bacteria via electrostatic, in which cationic 

charged antimicrobial polymers bond to the anionic charged 

bacterial membrane, disrupt the membrane, and ultimately 

prevent cell growth.  Another hypothesis is that antimicrobial 

polymers release low molecular weight antimicrobial agents 

that can bind to the membrane proteins and penetrate the cell 

wall. Antimicrobial agents interact with cell DNA and  

affect DNA transcription and mRNA synthesis [66]. 

Chitosan (CS) is the most famous and applicable natural 

antimicrobial polymer against an extensive variety  

of microorganisms. CS, an aminopolysaccharide 

biopolymer, has a unique chemical structure as a linear 

polycation with a high charge density, reactive hydroxyl and 

amino groups as well as extensive hydrogen bonding.  

t displays excellent biocompatibility, physical stability and 

processability. The most prevalent proposed antibacterial 

activity of CS is by binding to the negatively charged 

bacterial cell wall causing disruption of the cell, thus 

altering the membrane permeability, followed by 

attachment to DNA causing inhibition of DNA replication 

and subsequently cell death. BNC-CS composites showed 

amazing features such as ultrafine nanofiber network, 
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Polymyxin B 

 

Ampicillin 

 

Tetracycline hydrochloride 

 

Gentamicin 

 

Ceftriaxone 

 

Chloromycetin 

Fig .2: The structure of antibiotics in NC-based antibacterial materials [39]. 
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Fig. 3: Schematic presentations of the antimicrobial mechanisms of several nanoparticle [52]. 

 

ability to hold large volumes of water, high tensile strength 

and elastic modulus. The cumulative release rate of CS 

from the composites depend on its molecular weight (Mw) 

and pH of solution. Many studies confirmed that with the 

increasing of CS Mw, the antibacterial activity increases 

accordingly [67].  Polylysine has a high positive charge 

density, enabling it to form soluble complexes with 

negatively charged macromolecules. Polylysine is a 

cationic polymer that binds heavily to negatively charged 

DNA, therefore, it can easily damage microbial cell 

membrane and inhibit their proliferation. BC- Polylysine 

composites showed excellent antimicrobial activity 

against both E. coli and S. aureus [68]. 

 

BNC-based Structures Biocompatibility for Biomedical 

Applications 

 Biocompatibility is a general term describing the 

property of a material being compatible with living tissue. 

Biocompatible materials do not produce a toxic or 

immunological response when exposed to the body or 

bodily fluids. In recent years, many studies have examined 

the biocompatibility of BNC [44]. Table 4, shows recent 

studies about BNC toxicity and their conclusions for 

biomedical applications. 

BNC, A versatile polymer: From hard tissue Engineering 

to complex soft tissues regeneration 

In recent years polysaccharides-based materials are 

used extensively in tissue engineering, usually in hard 

tissue regeneration. BNC-based 3D scaffolds are so 

attractive over other biomaterials due to their excellent 

biocompatibility, suitable mechanical properties, high 

surface area and renewable nature. The nanofibrous 

network of BNC shows wonderful effects on cell 

behaviors such as attachment, migration, proliferation and 

differentiation. BNC is insoluble in aqueous media and has 

excellent thermal stability, furthermore, it cannot be 

biodegraded in-vivo due to the lack of cellulase enzymes 

in the human body. BNC is not inherently antibacterial,  

but the adding external antimicrobial agents can cause this 

property in it. BNC can be used as ideal delivery of 

recombinant human BMP-2 (rhBMP-2) for bone tissue 

repairing. Further, BNC scaffolds containing BMP-2 a 

nd cells present considerably improved bone matrix 

secretion [89]. In a study, BNC scaffold loaded with 

fisetin and bone marrow MSCs showed high cell viability 

and improved differentiation of bone marrow MSCs into 

the osteoblasts and also increased the expression of 

osteocalcin and osteopontin genes in the cells [90]. 
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Table 4: Recent studies about toxicology experiments and conclusions for BNC. 

Toxicological experiment Conclusion for biomedical applications References 

L929 cells No cytotoxic-Auricular cartilage regeneration [69] 

RSC96 cells Good biocompatibility- Scaffold material for neural tissue engineering [70] 

Human dermal fibroblast cell Cell proliferation promoted-Wound dressing [71] 

Pig iliac endothelial cells (PIECs) Cell proliferation promoted-BNC conduits for blood vessel applications [72] 

Hemolysis assay Highly hemocompatible-Soft tissue implants [73] 

L929 cells High biocompatibility-Non viral gene delivery system [74] 

M3TCT3-E1 pre-osteoblast cells High biocompatibility and Cell proliferation promoted [75] 

Schwann cells Good biocompatibility [76] 

Shell-less hen’s egg model Good biocompatibility- Gene activated matrix [77] 

Shell-less hen’s egg model Excellent biocompatibility- Drug delivery system [78] 

Chondrocytes Excellent biocompatibility- Cartilage tissue 3D printing [79] 

Human monocyte/macrophage cell line, THP-1 Good biocompatibility- Implantable meshes [80] 

Rat basophilic leukemia RBL-2H3 cell line Cell proliferation promoted- Mesh for biomedical applications [81] 

Chondrocyte Excellent biocompatibility- Cartilage implant [82] 

Primary human fibroblasts Promote wound repair- Wound healing [83] 

Human Umbilical Vein 

Endothelial Cells 

High biocompatibility -Scaffolds with a complex vascular mimetic lumen 

structure 
[84] 

Fibromuscular cells Promote wound repair-Alternative patch material in congenital heart disease [85] 

Mesenchymal stem cells (MSCs) Excellent adhesion ability-Tissue engineering [86] 

Whole blood clotting assay Highly hemocompatible- Hemostatic dressings [87] 

Human embryonic stem cell-derived limbal stem 

cells 
Cell proliferation promoted- Ocular surface pathologies [88] 

 

BNC is also used frequently in dental field. It can be used 

for Guided Tissue Regeneration (GTR) technique at 

periodontal diseases treatment. Many studies showed that 

BNC membranes were successfully used in association 

with bone-integrated implants. BNC-based composites 

such as BNC- alginate structure are applied as a temporary 

dressing of oral surgical flaps due to excellent potential of 

BNC for use in the oral cavity to cover surgical 

wounds [91]. Fig.4, shows some examples of the BNC-

based temporary wound dressing. In endodontics field, 

BNC is an amazing biomaterial for dental root canal 

treatment since don’t present harmful effects, and also  

in wet conditions, it shows a high absorption rate  

without deformation. It is an amazing candidate for 

reinforcing other biomaterials such as dental cements due 

to decreasing the setting time and increasing the 

mechanical strength of cement. It can be concluded that 

BNC due to its unique properties has attracted much 

attention for biomedical and tissue engineering 

applications. Dental applications of BNC have certain 

complexities, since several its features such as elasticity, 

mechanical stability, and hemostatic, easy handling during 

surgery and acting as a barrier against microorganisms, 

directly affect the oral mucosa and periodontal tissue 

regeneration process. By considering the satisfactory 

results of many studies conducted to date, it can be hoped 

that unpredictable properties for these materials will 

appear in the future [91]. As reviewed and discussed in this 

section, many BNC-based biomaterials for bone tissue 

engineering/dental and oral fields are presented in Table 5.   

Lately, in soft tissue field, the use of BNC has attracted 

much attention due to its satisfactory performance. It can 

be used as both matrix and reinforcement material. Many 

studies described BNC applications for cardiovascular, 

nervous and urinary tissue regeneration. This polymer due to 

its amazing properties such as mechanical and physical  
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Fig.4: BNC-based dressings cover many types of wounds in the oral mucosa [77]. 

 

stability, high purity and biocompatibility is extensively 

used as wound dressing material, artificial skin and blood 

vessels. BNC as wound dressing structure, promotes 

autolytic debridement and accelerates granulation, 

furthermore, it can regulate the moisture content of the 

wound area, sometimes by absorbing moisture from the 

wound area and sometimes by releasing fluid to the same 

area. Despite many benefits of BNC, there are serious and 

challenging limitations to the application of wound healing 

such as absence of antibacterial property, stress bearing 

capability and optical transparency. To overcome these 

challenges, compositing with other materials is very 

efficient. In normal condition, blood vessels are 

responsible for blood circulation throughout the body and 

all tissues. When pathogenic agents damage the vessels, it 

is necessary to replacement with artificial blood vessels. 

BNC are frequently used as a synthetic graft and it must be 

tested for resistance to high blood pressure. In vivo studies 

confirmed that BNC graft could integrated with the 

surrounding tissue and no infection was found at the 

damaged site [115]. This polymer is suitable for small 

diameter vessels, but side effects should be removed [81].  

BNC is also an important candidate for nerve tissue 

regeneration due to its versatile surface chemistry and 

physiomechanical properties. The combination of this 

polymer with conductive structures can accelerate neural 

tissue repairing [116]. Bladder cancer is another soft tissue 

that needs new biomaterials for urinary tissue 

reconstruction, BNC can provide good growth conditions 

for urine derived stem cell and enhance new tissue 

formation [117]. Corneal injuries and ulcers need 

keratoplasty to restore eye integrity, BNC has high 

potential to treat eye disease. Its high mechanical strength, 

water holding ability, good transparency, permeability  

to liquids and gases make it an appropriate material  

for contact lenses [118]. BNC is used for prosthetic meshes 

in abdominal wall defects due to its strain and elasticity [119]. 

In summary, in vitro and in vivo studies confirmed that BC 

had high potential for biomedical and tissue engineering 

applications.  Although results described BNC as a substitute 

for hard and soft tissues, more clinical studies are required 

to gain the structures that mimic the properties and 

performance of native tissues.  

 

CONCLUSION AND FUTUR PROSPECTS 

BC is an organic compound produced by specific types 

of Gram-negative and Gram-positive bacteria. BC 

production depends on many factors such as the growth 

medium, environmental conditions and the formation of 

byproducts. In recent years, BC and its family members 

have been widely used in medicine and engineering. 

Genetic modification of it, is essential for stable and  
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Table 5: Potential BNC-based biomaterials for dental and bone tissue engineering. 

Composition Potential use 
Bone tissue 

engineering 

Dental and oral 

treatments 
BC advantages References 

BC Barrier membrane - 
Periodontal 
treatment 

Improved cell attachment and proliferation with 
no chronic inflammatory response 

[92] 

BC Scaffold - 
Dental pulp tissue 

treatment 

Enhanced the hardening processes of cement- 
Induced mineralized barrier and apical closure 

[93] 

BC Surgical suture - Dental surgery 

Increased mechanical strength and promoted cell 
proliferation-BC-based yarn significantly 

promoted wound healing without obvious adverse 

effects 

[94] 

BNC Barrier membrane 
Guided bone 
regeneration 

- 
Low biocompatibility- large amount of mature 

connective tissue in the defect sites 
[95] 

BNC Barrier membrane - 
Regenerative 

endodontics 

Membranes showed good biocompatibility and  

inhibited biofilm formation 
[96] 

BNC Membrane - 
Periodontal tissue 

regeneration 

 

Promoted cell proliferation and enhanced  

formation of mineralized nodules 
[97] 

Cellulose 
nanocrystals 

Nanocomposite - Dental adhesive Showed a slight improvement of flexural strength [98] 

Nanocellulose Composite - 
Flowable dental 

composites 

Increased the compressive strength of the 

flowable dental composite and permitted their 

utilization in stressed areas 

[99] 

BNC Patches - 

Aphthous 

Stomatitis 
Treatment 

patches were non-cytotoxic and enhanced drug 
delivery- BC improved thermal stability of the 

patches- composite patches retained their 
mechanical integrity after water absorption 

[100] 

Biocellulose 
nanowhisker 

Composite - 

Cement composites 

for endodontic 

applications 

Improved  the hardening processes of cement and 
improved the hydrosilicates formation 

[101] 

BNC Film - Wound dressing 
Improved mechanical qualities, and excellent cell 

adhesion and proliferation 
[102] 

BNC Membrane 
Guided bone 

regeneration 
- 

Increased the amount of new bone formation and 

fibrous connective tissues 
[103] 

BNC Nanocomposite Bone regeneration - 
Promoted the formation of bone like apatite and 

stimulated the early development of the 

osteoblastic phenotype 

[104] 

BNC Hybrid materials Bone repair - 
Increased  the release of Sr2+ and modulated bone 

repair 
[105] 

BNC Membrane 
Bone tissue 

regeneration 
- 

Enhanced osteogenic differentiation of cells and 

increased osteogenic gene expression 
[106] 

BNC 
Biphasic calcium 

phosphate scaffold 

Bone tissue 

regeneration 
- 

Improved bone regeneration, cell attachment and 

proliferation and increased the osteoblastic gene 
expression 

[107] 

BNC Hydrogel 
Bone tissue 

regeneration 
- 

hydrolysis with phosphoric acid modified the 

pattern of X-ray and decreased the crystallinity of 
cellulose 

[108] 

BNC Gel Bone regeneration - 
Improved compression modulus  and stimulated 

calvaria regeneration 
[109] 

BNC Nanocomposite Bone regeneration - Improved mechanical properties [110] 

BNC 
Nanocomposite 

scaffolds 
Bone repair - 

Regulated the nucleation and growth of nano 

hydroxyapatite- promoted the proliferation of 

MC3T3-E1cells-promoted the formation of bone 
tissue in rat skull defect model 

[111] 

BNC 
Composite scaffold 

 
Bone support materials - 

Enhanced in vitro bioactivity and cell 

proliferation and increased alkaline phosphatase 

(ALP) activity, and osteogenic-related gene 
expression 

[112] 

BNC 
Composite scaffold 

 

Osteogenic 

differentiation of 
human mesenchymal 

stem cells 

- 
Improved physical stability of scaffold and 

osteogenic differentiation of cells 
[113] 

BNC Composite film Bone regeneration - 
Improved thermo-mechanical stability of scaffold 
and increased deposition of Ca–P mineral on its 

surface 

[114] 
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cost-effective applications. BNC has more remarkable 

features as compared to other materials, such as 

biocompatibility, good physical and mechanical 

properties, thermal stability and high crystallinity, 

therefore, it is a promising tool for biomedical and tissue 

engineering applications. There are several challenges 

about it, such as its insolubility in water and several other 

solvents, which limit its use in designing scaffolds for soft 

and hard tissues engineering. This problem can be solved 

by applying modified BNC. Physical and chemical 

modifications or combination with other biomaterials  

can significantly enhance BC properties for a wide range 

of applications such as wound healing process, drugs and 

biomolecules delivery systems, implants and grafts for 

different parts of human body. In many cases, low 

degradation rate of BNC-based structures is useful for 

tissue regeneration, but low solubility, low permeability 

and low bioactivity of it is serious challenges to use  

in biomedical area. It is necessary to apply the green 

method with low-energy and low cost for BNC.  

The antibacterial activity of BC-based structures improves 

by adding antibiotics including ceftriaxone, tetracycline 

hydrochloride, amoxicillin and etc. The overuse of antibiotics 

significantly causes resistance to antibiotics, then reduces  

the antimicrobial activity of BC. To overcome these 

challenges new antibacterial agents with strong effects and 

high durability have been developed. Metal and metal 

oxide nanoparticles, bioactive substances, natural and 

synthetic polymers and nanosilicates can be easily 

compounded with BC to obtain antibacterial property. 

BNC-antibacterial materials composites have high 

potential to prevent infection and accelerate wound 

healing, but there are some serious problems such as metal 

and metal oxide toxicity, environmental pollution and 

uncontrolled release of natural compounds should be 

answered in biomedical applications. BNC is a useful and 

appropriate biomaterial used as artificial skin, implants, 

and artificial blood vessels, wound dressing, soft and hard 

tissue scaffolds. Many in vitro and in vivo studies are 

needed to investigate the low-cost method for BNC 

synthesis that can use waste materials for feed-stock.  

The supplementation of culture medium with active 

materials can modulate the intrinsic features of BNC  

to obtain the excellent biological properties. Overall,  

the main and important goals of BNC-based studies are  

the fabrication of BNC-based smart composites, improvement 

its properties, reducing production costs and designing  

the suitable technique for industrial-scale production of it. 
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