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ABSTRACT: The surface tension of aqueous polymer solutions is an important property that plays 

a vital role in mass and heat transfer. In this study, the surface tension of a polymer mixture is modeled 

using four algorithms (Adaptive Neuro-Fuzzy Inference System (ANFIS), Multi-Layer Perceptron (MLP), 

Radial Basis Function (RBF), and  Adaptive group of Ink Drop Spread (AGIDS) ) which has been developed 

in the soft-computing domain. In this paper, four models for predicting the surface tension are applied 

and the results were compared with our published experimental data and it was found that  

the predictions of these models fit the experimental data very accurately. Also, a comparison has been done 

to evaluate the effectiveness of the relevant four algorithms in the current problem. The simulation 

results have shown that ANFIS and RBF model predictions are more accurate than the two others  

in the current problem. 
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INTRODUCTION 

One of the significant properties of industrial processes 

is the surface tension of a mixture. It can influence the 

mass transfer and hydrodynamic rate in multi-phase 

systems such as extraction, absorption, etc. surface tension 

aqueous polymer solution. Knowledge of surface tension 

aqueous polymer solution is required for research on pool 

boiling of these fluids due to influencing bubble formation 

in the bulk as well as on the boiling surface [1]. Surface 

tensions of polymers are significant in the technology of 

textiles, plastics, coatings, films, and adhesives through 

their effects on the processes of wetting, adsorption, and 

adhesion[2, 3].  

Interactions between water and soluble polymer in 

aqueous solution are of great interest from the fundamental 

standpoint in the process of enhanced oil recovery, 

processed food, paint, and cosmetics [4-5]. 

 

 

 

Most high polymers are, however, very viscous even  

at high temperatures. Furthermore, they exhibit non-

Newtonian theology. Considerable care is, therefore, 

required to ensure valid measurements [2]. Different 

methods have been applied to obtain mixture surface 

tension except the aqueous polymer such as activity 

coefficient model [6], gradient theory [7], and perturbation 

theory [8]. To date, there are no publications concerning 

the modeling of surface tension on the aqueous polymer 

field. 

In the past decade, soft computing has been a hot 

research area because of its ability to reason and learn  

in an environment of uncertainty and imprecision. 

Different soft computing algorithms have been used in 

many engineering fields and have shown their ability to 

control, model, predict, etc. problems [9–12]. In this research,  
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three types of soft computing algorithms, consisting of 

fuzzy modeling, artificial neural network, and neuro-fuzzy 

approaches are being used for modeling of surface tension 

of the aqueous polymer such as PEG 200 + Water, PEG 

300 + Water, PEG 6000 + Water and PPG 2000 +Ethanol. 

The AGIDS (from fuzzy domain), MLP and RBF (both 

from artificial neural network approach) and ANFIS (from 

neuro-fuzzy approach) algorithms, have shown their 

performance in many applications for solving hard 

problems [13–15]. In the current research, their ability  

in the modeling of surface tension of the aqueous polymer 

problem is investigated and compared to each other. 

 

EXPERIMENTAL SECTION 

As mentioned in the previous article [16], Absolute 

ethanol GR (>99.8%), and poly (ethylene glycol) with 

average number molecular weights of 200 and 300 (stated 

purity ≤ 99.0% (mass)) were purchased from Merck. 

Also, poly (ethylene glycol) with MW=6000 (purity ≤ 

99.0% (mass)) and propylene glycol 2000 (purity ≤ 

99.0% (mass)) were from Fluka and Riedel-deHaen, 

respectively. The polymer's polydispersity was equal to 1 

and double-distilled water was used in making the 

solutions. The solutions were prepared in mass, using  

an analytical balance with ± 0.1mg accuracy. The surface 

tension measurements were carried out using a 

thermostated tensiometer (model K9 Kruss Germany) 

with an accuracy of ± 0.1mN/m, at temperatures of 

(298.2, 308.2, 313.2, 318.2, 328.2, and 338.2) K and 

atmospheric pressure.  

 

OVERVIEW OF SOFT-COMPUTING ALGORITHMS 

In this section, a brief explanation of different soft-

computing algorithms which are used in this paper  

is given. 

 

ANFIS 

Using the advantages of artificial neural network and 

fuzzy modelling concepts, ANFIS plays a significant role 

in many real-world applications such as modeling, control, 

pattern recognition and etc. as a powerful hybrid neuro-

fuzzy algorithm in soft-computing domain [17-21]. 

In Fig. 1, the five layer structure of ANFIS algorithm 

is shown with a pictorial definition of each layers task. 

First layer consists of several node, which each node apply 

a membershipfunction Mij to the corresponding input 

variable xi and generates a confidence degree between  

0 and 1 as an output of the node. 

The output of nodes in layer 2 is computed by 

application of a T-norm operator such as production  

to its inputs value which come from layer 1 like 

1 11 1 21 2w M (x ) M (x )=  . In layer 3 a normalization 

process will be done using equation 1. 

w
w

w w
=

+

1
1

1 2

                                                                      (1) 

The output of each node in layer 4 is computed using 

i i i i i i io w Z w (p x q x r )=  =  + +1 2 . The iw  variable is 

the output of layes 3 nodes and  i i ip ,q , r  are the 

parameter set which should be computed in learning phase 

of the ANFIS structure. Output of the ANFIS structure  

is computed using the equation 2 as follows.  

i i

i

out f (x , x ) w f= = 1 2                                              (2) 

The unknown parameters of the ANFIS algorithm  

can be computed using any suitable optimization 

algorithm like gradient decent, genetic algorithm and etc. 

 
RBF algorithm 

At first Broomhead et. al. proposed the RBF network as a 

soft-computing algorithm which is used successfuly in many 

engineering applications such as function approximation, data 

classification, system control and etc.[22-25]. 

Three main layers, input, hidden and output layer 

constitute the RBF structure as shown in Fig. 2. The values 

of the input varibles (systems inputs) are delivered to the 

multi-variate Gaussian activation functions in hidden layer 

using the input neurons in layer 1. A weighted sum 

approach is used to compute the overall output of the 

system in the output layer. It is worth to note that the RBF 

algorithm is used for modelling a multi-inputs and single 

output system. 

An instatiation of a RBF network for two inputs and 

one output system is shown in Fig. 2 with two input 

neurons, 4 Gaussian hidden neurons and one linear output 

neuron. Equation 3 shows the activation function of the 

Gaussian neuron in hidden layer. In this equation, the yj is 

the output of the jth hidden neuron, x is the input vector 

which is defined as 1 2x [x , x ]= , j  is the center of jth  
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Fig. 1: Structure of ANFIS algorithm. 
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Fig.  1 RBF structure for a two inputs and one output system. 

 

hidden neuron which is defined by j j j[ , ] =  1 2  and j  

is the variance of the Gaussian function and assumed equal 

for both x1 and x2 variables. 

j

j

j

- || x - ||
y exp

 
 =
  

2

2
                                                                  (3) 

Output of the system is computed using Eq. (4) using  

a linear combination of the hidden neurons output. 

j

j j j

j j j

- || x - ||
y _ out w y w exp

 
 = =
  

 
2

2
                  (4) 

Training the RBF network can be done by 

minimization of the error term which is defined in eq. (5) 

using a suitable optimization algorithm [26-27]. In this 

equation, yti is the real output of the ith training sample and 

ymi is the output of the constructed model. 

n

ti mi

i

Error || y y ||
=

= − 2

1

                                                 (5) 

 
MLP algorithm 

Artificial neural network algorithms was inspired  

form the human biological brain system[28]. MLP  
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Fig. 2: Structure of 3 layers MLP model. 

 

is a well-known algorithm in this area for solving 

complicated nonlinear problem [29-32]. MLP consists of 

at least three layers (input, hidden and output) in a feed-

forward structure. Input neurons in the first layer delivers 

the value of the input variables of the system to the next 

layer through the synaptic weights. Hidden layers consist 

of perceptron neurons as a basic processing elements 

which sums its input and apply a nonlinear function 

(usually sigmoid) to the summation result. Using the 

nonlinear neurons, hidden layer increases the nonlinear 

modelling ability of the network for solving complex 

problems. In Fig. 3 a sample structure of a MLP network 

with two inputs and one output is shown. 

Synaptic weights of the network are the parameter of 

the structure which should be defined using a suitable 

algorithm in the training phase. Back propagation which is 

proposed in [33] is a well-known and significant training 

algorithm of  MLP, is using in many applications. 

 

AGIDS algorithm 

Also Active Learning Method(ALM) performs very 

well as fuzzy modeling algorithm in many engineering 

applications such as pattern classification, system 

modeling, control and etc., but because of hardware 

implementation complexity and need of time consuming 

optimization algorithms, its not suitable for many real-time 

real-world applications [34-38]. Trying to solve the ALMs 

defficacies resulted in proposition of the AGIDS 

algorithms by Esmaili et. al. in [39]. AGIDS is one of the 

last researches which has been done for solving these 

drawbacks in recent years[40-42]. Modeling a complex 

MISO (Multi-Inputs Single-output) system by breaking  

it to some simple SISO (Single-Input Single-Output) 

systems is the idea of ALM algorithm. Each SISO system 

is shown by an IDS plane which is an image with 

resolution rsnx*rsny (rsnx and rsny are number of 

quantization levels in x and y axis direction respectively) 

as an pictorial modeling technique. Each IDS plane is 

construted by mapping each training data (x,y) using IDS 

operator which is implemented by placing a pyramid shape 

stain on the IDS plane for each training data as a diffusion 

operator. In Fig.4-a, a pyramid shape ink stain is shown, 

also a sample IDS plane with five diffused data on it, is 

shown in Fig.4-b. 

AGIDS uses the concept of the IDS plane and forms an 

IDS group for each training data which consists of k IDS 

planes for a system with k inputs and one output. The 

radius of the inks and the number of quantiztion level of 

the IDS plane are two parameters which can be defined by 

trial and error approach. In Fig. 5, a sample constructed 

model using AGIDS algorithm is shown for a two inputs 

one ouput system. The pictorial model can be shown by 

some proper if then rules too.  The models output will be 

computed by applying two fuzzy operators, T-norm  

and S-norm, on the antecedent and consequent parts of the 

rules respectively. output of the model is fuzzy number 

which defines a confidence degree for each quantization 

level of the output variable. The fuzzy number can be 

converted to a crisp number by any suitable deffuzifier like 

Weighted Average Formula (WAF). AGIDS has been shown  
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Fig. 3: a) Two Pyramid shape ink stains with overlap b)applying IDS operator for five sample data on an IDS plane [36]. 

 

 

Fig. 4: IDS groups for a two-inputs and one output system with p sample data [36]. 

 

its effectiveness in different applications vs. other 

conventional algorithms [36,40]. 

 

RESULTS AND DISCUSSION 

The experimental data of surface tensions of different 

polymer solutions are presented in Tables 1-4. 

In this section, using the experimental data, the 

simulation results of modeling of the surface tension using 

the four aforementioned algorithms are explained. In this 

work, four aqueous polymer solutions(PEG 200 + Water, 

PEG 300 + Water, PEG 6000 + Water and PPG 2000 

+Ethanol) were considered. According to data, surface 

tension is a function of weight fraction and temperature. 

As can been seen, when weight fraction of polymer 

increased, the surface tension decreased. In adtion when 

temperature of solution increased, the surface tension 

decreased.  

Evaluation of modeling accuracy is done using two 

well-known measurement indexes in machine learning 

application, Fractional Variance Unexplained (FVU) and 

Mean Square Error (MSE) which are defined as Equations 

(6) and (7). 

n

i i

i

ˆMSE (y y )
n =

= −
1

1
                                                                  (6) 

n
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Table 1: Measured surface tension of PEG 200 + Water solutions at various temperatures/K and concentrations. 

 T/K =303.15  T/K =308.15 

w exp. / (mN/m) w exp. / (mN/m) 

0.1493 59.85 0.1493 58.81 

0.222 57.88 0.222 56.85 

0.2329 57.68 0.2329 56.64 

0.3828 54.63 0.3828 53.58 

0.4481 52.79 0.4481 51.75 

0.467 52.05 0.467 51.08 

0.5197 51.49 0.5197 50.46 

0.5586 50.63 0.5586 49.62 

0.6411 49.39 0.6411 48.28 

0.712 47.58 0.712 46.54 

0.7328 47.26 0.7328 46.22 

 T/K =313.15  T/K =318.15 

w exp. / (mN/m) w exp. / (mN/m) 

0.1493 57.87 0.1493 56.83 

0.222 55.81 0.222 54.99 

0.2329 55.59 0.2329 54.55 

0.3828 52.65 0.3828 51.71 

0.4481 50.82 0.4481 49.81 

0.467 50.19 0.467 49.39 

0.5197 49.45 0.5197 48.55 

0.5586 48.72 0.5586 48.12 

0.6411 47.12 0.6411 46.17 

0.712 45.51 0.712 44.69 

0.7328 45.19 0.7328 44.28 

 T/K =323.15  T/K =328.15 

w exp. / (mN/m) w exp. / (mN/m) 

0.1493 55.77 0.1493 54.66 

0.222 54.07 0.222 53.3 

0.2329 53.5 0.2329 52.56 

0.3828 50.99 0.3828 50.36 

0.4481 49.21 0.4481 48.19 

0.467 48.49 0.467 47.43 

0.5197 47.52 0.5197 46.44 

0.5586 46.84 0.5586 45.49 

0.6411 45.25 0.6411 44.23 

0.712 43.98 0.712 43.17 

0.7328 43.57 0.7328 43.06 

 T/K =333.15  T/K =338.15 

w exp. / (mN/m) w exp. / (mN/m) 

0.1493 53.66 0.1493 52.73 

0.222 52.57 0.222 51.63 

0.2329 51.42 0.2329 50.49 

0.3828 49.25 0.3828 48.23 

0.4481 46.93 0.4481 45.99 

0.467 46.26 0.467 45.34 

0.5197 45.41 0.5197 44.39 

0.5586 44.48 0.5586 43.25 

0.6411 43.09 0.6411 42.51 

0.712 42.35 0.712 41.61 

0.7328 42.65 0.7328 41.93 
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Table 2: Measured surface tension of PEG 300 + Water solutions at various temperatures/K and concentrations. 

 T/K =298.15  T/K =303.15 

w exp. / (mN/m) w exp. / (mN/m) 

0.108 60.03 0.108 59.09 

0.1998 57.69 0.1998 56.66 

0.2987 53.6 0.2987 52.67 

0.3926 51.98 0.3926 50.92 

 T/K =308.15  T/K =313.15 

w  exp. / (mN/m) w  exp. / (mN/m) 

0.108 58.16 0.108 57.44 

0.1998 55.71 0.1998 54.58 

0.2987 52.27 0.2987 51.54 

0.3926 49.92 0.3926 48.41 

 T/K =318.15  T/K =323.15 

w exp. / (mN/m) w exp. / (mN/m) 

0.108 56.73 0.108 55.46 

0.1998 53.3 0.1998 52.42 

0.2987 50.52 0.2987 49.51 

0.3926 47.89 0.3926 46.81 

 T/K =328.15  T/K =333.15 

w exp. / (mN/m) w exp. / (mN/m) 

0.108 54.73 0.108 53.58 

0.1998 51.44 0.1998 50.37 

0.2987 48.38 0.2987 47.21 

0.3926 46.29 0.3926 45.27 

 T/K =338.15   

w exp. / (mN/m)   

0.108 52.58   

0.1998 48.57   

0.2987 46.35   

0.3926 44.19   
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Table 3: Measured surface tension of PEG 6000 + Water solutions at various temperatures/K and concentrations. 

 T/K =298.15  T/K =303.15 

w exp. / (mN/m) w exp. / (mN/m) 

0.0399 59.87 0.0399 58.84 

0. 0601 59.02 0. 0601 58.4 

0.0982 58.26 0.0982 57.23 

0.1974 57.13 0.1974 56.11 

 T/K =308.15  T/K =313.15 

w exp. / (mN/m) w exp. / (mN/m) 

0.0399 57.98 0.0399 57.25 

0. 0601 57.4 0. 0601 56.37 

0.0982 56.71 0.0982 55.79 

0.1974 54.84 0.1974 53.69 

 T/K =318.15  T/K =323.15 

w exp. / (mN/m) w exp. / (mN/m) 

0.0399 55.74 0.0399 54.69 

0. 0601 55.35 0. 0601 54.29 

0.0982 54.73 0.0982 53.37 

0.1974 52.65 0.1974 51.62 

 T/K =328.15  T/K =333.15 

w exp. / (mN/m) w exp. / (mN/m) 

0.0399 53.64 0.0399 52.61 

0. 0601 53.83 0. 0601 52.22 

0.0982 52.23 0.0982 51.19 

0.1974 50.59 0.1974 49.47 

 T/K =338.15   

w exp. / (mN/m)   

0.0399 51.27   

0. 0601 51.42   

0.0982 50.17   

0.1974 48.28   
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Table 4: Measured surface tension of PPG 2000 + Ethanol solutions at various temperatures/K and concentrations. 

 T/K =298.15  T/K =303.15 

w exp. / (mN/m) w exp. / (mN/m) 

0.1 22.14 0.1 21.54 

0.2 22.44 0.2 21.84 

0.3 22.64 0.3 22.14 

0.4 22.94 0.4 22.44 

 T/K =308.15  T/K =313.15 

w exp. / (mN/m) w exp. / (mN/m) 

0.1 21.24 0.1 20.54 

0.2 21.34 0.2 20.84 

0.3 21.64 0.3 21.34 

0.4 22.24 0.4 21.94 

 T/K =318.15  T/K =323.15 

w exp. / (mN/m) w exp. / (mN/m) 

0.1 20.34 0.1 19.84 

0.2 20.44 0.2 20.13 

0.3 20.84 0.3 20.44 

0.4 21.44 0.4 21.24 

 T/K =328.15  T/K =333.15 

w exp. / (mN/m) w exp. / (mN/m) 

0.1 19.44 0.1 19.26 

0.2 19.63 0.2 19.32 

0.3 20.34 0.3 20.03 

0.4 21.54 0.4 20.68 

 T/K =338.15   

w exp. / (mN/m)   

0.1 18.78   

0.2 18.92   

0.3 19.42   

0.4 20.29   

 

Where n is the number of test data, yi is the real output, 

iŷ  is the model’s output and y  is the mean value of  

the real outputs which is defined with 
n

i

i

y (y )
n =

= 
1

1
. The FVU 

is a normalized index which by increasing the model 

accuracy it will decrease to zero. 

The number of quantization levels and the ink radius 

for AGIDS algorithm are set to 64 and 4 respectively.  

The number of neurons in hidden layer of MLP algorithm 

is set to 10 and the activation function are tansig for hidden 

layer and linear for output layer. For the purpose of 

simulations, 70 percent of the data are used as training set  
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Table 5: Comparison of four algorithm performance in modeling task . 

] algorithm FVU(mean) FVU(std) MSE(mean) MSE(std) 

PEG 200 + Water solutions 

AGIDS 0.0466 0.0123 0.8524 0.1601 

MLP 0.0112 0.0082 0.4364 0.1030 

RBF 0.0046 0.0008 0.3272 0.0270 

ANFIS 0.0083 0.0023 0.0324 0.2545 

PEG 300 + Water solutions 

AGIDS 0.0595 0.0170 0.8488 0.1069 

MLP 0.0196 0.0112 0.5042 0.1380 

RBF 0.0116 0.0028 0.4059 0.0347 

ANFIS 0.0111 0.0034 0.0304 0.2737 

PEG 6000 + Water solutions 

AGIDS 0.1286 0.0434 0.9007 0.2907 

MLP 0.0323 0.0232 0.5147 0.3313 

RBF 0.0073 0.0025 0.2236 0.0159 

ANFIS 0.0082 0.0023 0.0055 0.1152 

PPG 2000 + Ethanol solutions 

AGIDS 0.2441 0.0625 0.4634 0.0521 

MLP 0.1300 0.0643 0.3507 0.0928 

RBF 0.0190 0.0196 0.1267 0.0133 

ANFIS 0.1089 0.0836 0.0106 0.2338 

 
and the rest 30 percent are used for test. All data are being 

normalized using the Equation (8) to have zero mean  

and variation of one. 

normalx
x x−

=


                                                                  (8) 

Where  x , x̅  and  𝜎 are the actual, mean and variance 

values of observed data respectively. 

In Table 5 the quantitative comparison of four 

algorithms performance is shown. Simulations are done 

for 100 times run and the mean and standard deviation of 

the results are reported. From the table, it can be deduced 

that ANFIS and RBF performance in modeling this 

phenomenon is better than respect to the other two 

algorithms. Both MSE and FVU indexes confirm this 

conclusion. 

In Fig. 6, a qualitative comparison for PEG 200 + 

Water solutions is done. Actually, the 3D surfaces of the 

four models are shown in the Fig. 6-a to Fig. 6-d. Each 

figure shows the surface tension vs. temperature and 

weight fraction. As can be seen from these figures, the 

result of ANFIS and RBF algorithms are similar together 

as a hyper plane surface vs the other two which have more 

non-linearity in the shape. A similar qualitative 

comparison is done for PEG 300 + Water solutions, PPG 

2000 + Ethanol solutions and PPG 2000 + Ethanol 

solutions which is shown in Figs. 7 to 9 with similar 

results.  

The regression coefficients for these four  

algorithms are being computed for more convenience  

and as can be conducted from Figs. 10 to 13, the 

 regression coefficients confirm the results of Table 1  

and Figs. 6 to 9. 
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(a) (b)

(c) (d)
 

Fig. 5: The modeling surface for a) AGIDS, b) MLP, c)ANFIS and d)RBF algorithms(PEG 200 + Water solutions). 

 

(a) (b)

(c) (d)
 

Fig. 7: The modeling surface for a) AGIDS, b) MLP, c) ANFIS and d)RBF algorithms(PEG 300 + Water solutions). 
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(a) (b)

(c) (d)
 

Fig. 8: The modeling surface for a) AGIDS, b) MLP, c)ANFIS and d)RBF algorithms(PPG 2000 + Water solutions). 

 

(a) (b)

(c) (d)
 

Fig. 9: The modeling surface for a) AGIDS, b) MLP, c)ANFIS and d)RBF algorithms(PEG 6000 + Water solutions). 
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Fig. 10: The regression coefficient for a) AGIDS(0.9835), b) MLP(0.9964), c) ANFIS(0.9965) d) RBF(0.9978) algorithms 

(PEG 200 + Water solutions). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11: The regression coefficient for a) AGIDS(0.9755), b) MLP(0.9964), c) ANFIS(0.9963) d) RBF(0.9954) algorithms 

(PEG 300 + Water solutions). 
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Fig. 12: The regression coefficient for a) AGIDS(0.9311), b) MLP(0.9577), c) ANFIS(0.9585) d) RBF(0.9916)  

algorithms(PPG 2000 + Water solutions). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13: The regression coefficient for a) AGIDS(0.9588), b) MLP(0.9896), c) ANFIS(0.9964) d) RBF(0.9968)  

algorithms(PEG 6000 + Water solutions). 
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CONCLUSIONS 

In this study, the ability of AGIDS (fuzzy approach), 

MLP, RBF (both from neural network approach) and 

ANFIS (neuro-fuzzy approach) algorithms were examined 

for their effectiveness to represent a wide surface tension 

on the aqueous polymer over a wide range of temperature 

and composition. The prediction results from simulations, 

was in a good agreement with experimental data. It can be 

concluded from the simulation results that the application 

of soft-computing models can be considered as an 

alternative for description of surface tension of aqueous 

polymer behavior and their responses are in a good 

agreement with experimental data. Based on the 

simulation results, ANFIS and RBF models performs  

the modeling task better than the other two algorithms in 

this problem. It should be noted that the effectiveness  

of these algorithms will be better with more existed 

experimental data. Using soft computing algorithms  

can be an effective approach in prediction of the chemical 

systems behavior, so it can reduce the experimental 

approaches costs.   
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