[1] Adamson, A. W., “Physical Chemistry of Surfaces”, Wiley: New York, (1990).
[2] Freitas, A. A., Quina, F. H., A Linear Free Energy Analysis of the Surface Tension of Organic Liquids,
Langmuir,
16, 6689 (2000).
[3] Joos, P., Rillaerts, E., Theory on the Determination of the Dynamic Surface Tension with the Drop Volume and Maximum Bubble Pressure Methods,
J. Colloid Interface Sci.,
79, 96 (1981).
[4] Singh, J. K., Errington, J. R., Calculation of Phase Coexistence Properties and Surface Tensions of
n-Alkanes with Grand-Canonical Transition-Matrix Monte Carlo Simulation and Finite-Size Scaling,
J. Phys. Chem.,
110, 1369 (2006).
[5] Tan, S. P., Adidharma, H., Towler, B. F., Radosz, M., Friction Theory and Free-Volume Theory Coupled with Statistical Associating Fluid Theory for Estimating the Viscosity of Pure n-Alkanes,
Ind. Eng. Chem. Res.,
44, 8409 (2005).
[6] Whorlow, R. W., “Rheological Techniques”, John Wiley and Sons: New York, (1992).
[7] Bell, J. M., Cameron, F. K., The Flow of Liquids Through Capillary Spaces,
J. Phys. Chem.,
10, 658 (1906).
[8] Washburn, E. W., The Dynamics of Capillary Flow,
Phys. Rev.,
17, 273 (1921).
[9] Holland, F. A., Bragg, R., “Fluid Flow for Chemical Engineers”, Edward Arnold: London, (1995).
[10] Lucas, R., Ueber das Zeitgesetz des Kapillaren Aufstiegs von Flussigkeiten,
Kolloid Z.,
23, 15 (1918).
[11] Levitt, L. S., The Viscosity of Liquids from the Half-Time of Rise in a Fine Vertical Capillary,
J. Phys. Chem.,
66, 1748 (1962).
[12] Rye, R. R., Yost, F. G., Mann, J. A. Jr., Measure-ment of Surface Tension and Viscosity by Open Capillary Techniques,
US Patent, No.5792941 (1998).
[13] Kalra, R., Deo, M. C., Kumar, R., Agarwal, V. K., Artificial Neural Network to Translate Offshore Satellite Wave Data to Coastal Locations,
Ocean Eng. ,
32 , 1917 ( 2005 ).
[14] Sözen, A., Arcakliogˇlu, E., Effect of Relative Humidity on Solar Potential,
Applied Energy,
82, 345 (2005).
[15] Abbassi, A., Bahar, L., Application of Neural Network for the Modeling and Control of Evaporative Condenser Cooling Load,
Applied Thermal Eng.,
25, 3176 (2005).
[16] Yang, J., Rivard, H., Zmeureanu, R., On-line Building Energy Prediction Using Adaptive Artificial Neural Networks,
Energy Buildings,
37, 1250 (2005).
[17] Peisheng, L., Youhui, X., Dunxi, Y. and Xuexin, S., Prediction of Grindability with Multivariable Regression and Neural Network in Chinese Coal,
Fuel,
84, 2384 (2005).
[18] Yagci, O., Mercan, D. E., Cigizoglu, H. K., Kabdasli, M. S., Artificial Intelligence Methods in Breakwater Damage Ratio Estimation,
Ocean Eng.,
32, 2088 (2005).
[19] Rezzi, S., Axelson, D. E., Héberger, K., Reniero, F., Mariani, C., Guillou, C., Classification of Olive Oils Using High Throughput Flow HNMR Fingerprinting with Principal Component Analysis, Linear Discriminant Analysis and Probabilistic Neural Networks,
Analytica Chimica Acta,
552, 13 (2005).
[20] Madan, A., Vibration Control of Building Structures Using Self-Organizing and Self-Learning Neural Networks,
J. Sound Vibration,
287, 759 (2005).
[21] Ahadian, S., The Attainment of Wetting Rate of Powders by Liquid Penetration Through the Use of Artificial Neural Network (ANN), MSc Thesis, Department of Polymer and Color Engineering, Amirkabir University of Technology, Iran (2006).
[22] “Lange’s Handbook of Chemistry”, Dean, J. A. Ed., McGraw-Hill: New York, (1992).
[23] Labajos-Broncano, L., González-Martín, M. L., Bruque, J. M., González-García, C. M., Comparison of the Use of Washburn's Equation in the Distance- Time and Weight-Time Imbibition Techniques ,
J. Colloid Interface Sci. ,
233 , 357 (2001).
[24] Grundke , K., Bogumil , T., Gietzelt , T., Jacobasch, H.J., Kwok, D.Y., Neumann, A.W., Wetting Measu-rements on Smooth, Rough and Porous Solid Surfaces,
Progr.ColloidPolym. Sci.,
101, 58, (1996).