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ABSTRACT: This paper presents a methodology for design of instrumentation sensor networks in 

non-linear chemical plants. The method utilizes a robust extended Kalman filter approach to 

provide an efficient dynamic data reconciliation. A weighted objective function has been introduced 

to enable the designer to incorporate each individual process variable with its own operational 

importance. To enhance the evaluation accuracy of the weighted objective function, a true relative 

standard deviation measure has been employed in the presented formulation. A Genetic Algorithm 

(GA) has been used to solve the resulting constrained optimization problem due to cost-optimal and 

performance-optimal design objectives. The proposed method has been tested on a non-linear 

continuous-stirred tank reactor (CSTR) benchmark plant, illustrating its effective design 

capabilities. 
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INTRODUCTION 

Sensors are necessary instrumentations in process 

plant to provide good quality process data for a variety of 

purposes. For a long time, the selection of sensors in 

chemical plants has been traditionally driven by the needs  

 

 

 

of basic control loop design. Efficient control and safe 

operation of chemical plants usually require the 

measurements of some specific process variables such as 

flow   rates,   temperatures,   and  compositions.  In   large  
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process plants, however, hundreds of such variables may 

exist. But only a subset of them is normally used in routine 

operations. Moreover, some of the interested process 

variables might not be available through measurements. 

These unmeasured variables are usually estimated by 

exploiting the mass and energy balance relationships 

between different variables.  The measured variables and 

all the unmeasured variables that can be uniquely 

estimated are denoted as observable. The observability of 

the process variables depends on the process structure as 

well as the locations of sensors. Consequently, the design 

of sensor networks in chemical plants to fulfill desired 

operational requirements has emerged as an important 

topic of interest. The engineering problem of sensor 

network design concerns the determination of which 

variable should be measured and with what precision, so 

that certain pre-specified quality of data is assured. 

The problem of "selecting instruments for optimal 

state estimation" has been analyzed by several 

researchers. Vaclavek and Loucka [1] first explored this 

problem to guarantee observability of a required set of 

variables in multi-component process using graph theory. 

Madron [5] presented a strategy based on the construction 

of minimum spanning trees for sensor networks with 

minimum cost or maximum overall precision. Ali and 

Narasimhan [2] presented a method that maximizes 

reliability in linear non-redundant networks. This 

approach was extended to obtain redundant networks 

with fixed number of sensors larger than the minimum by 

Ali and Narasimhan [3]. Sen, Narasimhan, and Deb [4] 

presented a genetic algorithm approach to design 

redundant sensor networks using different objective 

functions. 

Bagajewicz [6] proposed a different formulation 

based on mixed integer non-linear programming 

(MINLP) concept to obtain cost-optimal sensor network 

structures for linear systems, subject to constraints on 

precision and robustness. Many other similar research 

works have been presented, dating up to the year 2000, 

most of which are reviewed in the book by Bagajewicz 

[7]. Although all these works use different objective 

functions to accomplish maximum precision, minimum 

cost, maximum reliability, and so on, but it is shown that 

there is a connection between all the proposed models. 

Moreover they have been developed under the process 

steady state assumptions. 

In this paper, the design methodology proposed  

in [13] is modified and extended to be used for non- 

linear dynamic processes. The resulting methodology 

incorporates the extended kalman filter (EKF) to perform 

the required dynamic data reconciliation . An appropriate 

implementation approach has been adopted to consider 

the time-updated effect of changing process noise 

covariance on the state covariance matrix leading to a 

more accurate and robust data reconciliation  technique. 

In this work, a weighted objective function, including 

true relative standard deviation measures, has been 

proposed for evaluation of each candidate sensor network 

design solution which can provide a more practical and 

realistic design approach. Different simulation studies 

have been presented to apply the resulting design 

methodology to several sceneries. The results are finally 

compared with some existing methods. 

 

PROPOSED  DESIGN  METHODOLOGY 

Modified discrete-time EKF algorith 

The Kalman filter [14] provides an efficient recursive 

procedure to estimate the hidden states x∈Rnx of a discrete-

time process that is governed by the following linear 

stochastic process and measurement model equations: 

1k1k1kk wBuAxx −−− ++=                                           (1) 

kkk vHxz +=                                                               (2) 

Where xk denotes the hidden states, uk∈Rnu is the 

vector of external manipulated input variables, and 

zk∈Rnz represents the vector of noisy measured output 

variables at the kth discrete time. The random variables 

wk-1 and vk represent the process and measurement 

noises, respectively. A is the state transition matrix, B is 

the control matrix and H is the output observation matrix. 

However, in most practical applications of interest, the 

process dynamics and the measurement equations obey 

the following non-linear relationships: 

( ) 1k1k1kk wk,u,xfx −−− +=                                           (3) 

( ) kkk vk,xhz +=                                                          (4) 

Where f and h are known non-linear functions. As a 

result, nonlinearity can come in either through process 

model and/or through the measurement model. Applying 

the standard   Kalman filter on the linearized process and 

measurement  equations  about  the  nominal  state values  
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can introduce large errors leading to sub-optimal filter 

performance. 

EKF gives a simple and effective remedy to overcome 

such problem. Its basic idea is to locally linearize the 

non-linear system described by Eqns. (3) and (4) at each 

time instant around the most recent state estimate as 

follows: 

kx̂x

k
x

f
A

=∂

∂
=                                                                (5) 

kx̂x

k
x

h
H

=∂

∂
=                                                                (6) 

Where the state transition matrix Ak and the 

observation matrix Hk are the Jacobian matrices which 

are evaluated at x̂x = , that is the estimated values of the 

states in real-time rather than its nominal values. 

For estimating the output, however, the actual non-

linear measurement equation is used as ( )k,x̂hŷ kk
−= . 

Then, the kalman filter is applied to the resulting 

time-varing linearized model. This can provide a more 

accurate implementation of the optimal recursive 

estimation procedure. More details on the complete EKF 

algorithm are found in the related textbooks and papers. 

In practice, the process model in Eqn. (3) is of 

continuous-time nature. While, the measurements in Eqn. 

(4) are available through the common digital data-

acquisition systems at discrete measurement time 

instants. Moreover, the EKF algorithm is implemented 

digitally to process all available measurements regardless 

of their precision in order to provide a quick and accurate 

estimate of the variables of interest. Therefore, an 

efficient formulation of the algorithm needs to be made 

for a real-time practical application to minimize the filter 

cycle time, while obtaining a reasonable accuracy in the 

filter implementation. The method used in this paper for 

numerical integration of the process model from one 

sample time to the next is the first-order Euler integration 

technique. Using the transition matrix technique [15], the 

time propagation equation for the state covariance matrix 

P can be solved as: 

d
T

1kk QPP +ΦΦ= −
−                                                      (7) 

where: 

( ) ( )� −
ττΦττΦ=

s

s

kT

T)1k(
s

T
sd d,KT)(Q,kTQ                   (8) 

Table 1: The modified discrete-time EKF algorithm. 

 

In which Ts is the sampling period and Φ denotes the 

state transition matrix associated with Ak for all the time 

duration τ∈[(k-1)Ts, kTs] which can be evaluated by: 

ks ATI +=Φ                                                                  (9) 

As a result, Qd can be obtained using the following 

trapezoidal integration scheme: 

( )
2

T
QQQ sT

d +ΦΦ=                                                  (10) 

Table 1 summarizes the different steps needed for the 

efficient implementation of the modified discrete-time 

EKF algorithm. 

 

Performance evaluation of the measurement system 

The EKF algorithm gives the optimal process state 

estimate kx̂  and its associated error covariance matrix as 

the main two outcomes. As it is apparent from Eqn. (18), 

the computation of Pk is independent of the process 

variable measurements. Indeed, calculation of Pk requires 

the  measurement   covariance   matrix  (R),  the   process  

Initial estimates for 1kx̂ − and Pk-1 

 

Time Update (“Predict”) 

(I) Project the state ahead 

)x̂(fTx̂x̂ 1ks1kk −−

−
+=                                                                     (11) 

(II) create the Jacobean matrix 

xfA k ∂∂=                                                                                    (12) 

(III) Update the process covariance matrix 

ks ATI +=Φ                                                                                 (13) 

2

T
)QQ(Q

sT
+ΦΦ=                                                                    (14) 

(IV) Project the error covariance ahead 

d1kk QPP +ΦΦ= −

−
                                                                       (15) 

 

Measurement Update (“Correct”) 

(I) Compute the Kalman gain 

1T

kkk

T

kkk )RHPH(HPK
−−−

+=                                                         (16) 

(II) Update estimate with measurement zk 

)x̂HY(Kx̂x̂ kkkk1kk

−−

−

−
−+=                                                          (17) 

(III) Update the error covariance 

−−
−= kkkkk PHKPP                                                                         (18) 
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covariance matrix (Q), the observation matrix (Hk), and 

the state transition matrix (Ak). Ak and Hk are the 

Jacobian matrices, derived from the actual non-linear 

state-space models in Eqns. (3) and (4), which depend on 

the most recent state estimation. In this way, any possible 

time-varying dynamic variations in the process or 

measurement model equations can be introduced in the 

state estimation procedure. 

R is the measurement error covariance matrix which 

indicates the intrinsic quality of the available measuring 

devices. Thus, its elements can be used as the design 

parameters for sensor placement. Assuming that 

measurement errors due to the individual measuring 

devices are independent, the matrix R takes a diagonal 

form. However, determining the process noise covariance 

matrix Q is a complex and difficult task due to the fact 

that their elements can not be observed directly. Thus, a 

diagonal matrix with positive and fixed elements has 

been assumed in [13]. 

Changing the covariance matrix Q, however, affects 

both the transient duration and the steady state operation 

of the Kalman filter. Increasing Q would indicate stronger 

noises driving the system or increased uncertainty in the 

model. This will increase the values of the state 

covariance elements. The Kalman filter gains will also 

increase thereby weighting the measurements more 

heavily, and the filter transient performance becomes 

faster. In this paper, the time evolution of the state 

covariance matrix Pk has been derived based on the 

transition matrix technique. This approach brings about 

two main advantages. First, it leads to a robust Kalman 

filter implementation by preserving both the crucial 

symmetrical and positive definiteness properties of the 

state covariance matrix  Pk [14]. Secondly, it provides a 

reasonable way to increase the accuracy of the Kalman 

filter performance and hence the state covariance matrix 

estimation by time-updating the process noise covariance 

matrix through Eqn. (10). 

This proposed procedure makes it possible to evaluate 

the impact of the measurement covariance matrix R on the 

estimated error state covariance matrix Pk more accurately. 

Therefore, Pk can be used as an inferential criterion to 

assess the performance of the measurement network. It is 

assumed that the measurement error elements in R are 

independent and normally distributed. This causes the 

EKF algorithm to provide state estimates that are optimal 

in sense of possessing minimum variance unbiased error. 

For linear systems, the error state covariance matrix 

Pk may converge to a constant value over its recorded 

time-history, i.e.   k=0,. . . ,n. In this case, the following 

asymptotic value of Pk can be used as the performance 

evaluating measure for the jth process variable [13] : 

[ ]( )jk
nk

j
1,c PlimP

→
=                                                           (19) 

But, this is not the usual circumstance encountered in 

the practical non-linear and/or time-varying systems. As a 

result, the performance of the sensor network can be 

evaluated by the following averaging measure for the jth 

process variable [13]: 

[ ] ��
�

�
�
�
�

�
= �

=

n

0k

jk
j
2,c P

2

1
P                                                      (20) 

In the Kalman filter, the state distribution is 

approximated by a Gaussian random variable which is 

then propagated analytically through a first-order 

linearization of the non-linear system. Terms neglected in 

the linearization may be relatively large which can 

introduce large errors in the true error state covariance 

matrix (Pk). Therefore, assessing the system performance 

based on diagonal elements of the estimated error 

covariance (Pk) may lead to erroneous results. In this 

paper, the true error covariance matrix has been used as a 

substitute assessing basis as follows: 

[ ] [ ]( )jkjk
j
3,c xx̂iancevarP −=                                      (21) 

Where [xk]j is the time evolution (k=0, . . . , n) of the 

real jth process state variable obtained via the process 

simulation. 

 

System performance objective function 

Different sensor network designs have different 

performances. It is evident that performance of each 

possible network design should be evaluated in terms of 

all the process variables of interest. The performance 

measure considered in Eqn. (20), however, can be used to 

assess the estimation quality of only one particular 

process variable. Therefore, an objective function is 

needed to aggregate the combined performance of the 

whole system due to the performance of individual 

process variable measurement, given by Eqn. (20). A 

suitable option is based on the modification of the 

proposed  measure  in  [13]  which  evaluates  a  weighted  
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absolute distance of the selected sensor network ( )j
3,cP  

from the best possible sensor network ( )j

b
P  as follows: 

1

Sj

j
b

j
3,cj

S
P PP1d

−

∈
�
�

�

�

�
�

�

�
−λ+= �                                        (22) 

Where S denotes the set of process variables of 

interest to be measured or observed, and λj is a weighting 

factor indicating the importance of the jth process 

variable in the network design. As shown, the obtained 

distance measure (dp
s) has been normalized to give an 

evaluating measure value between 0-1, dp
s∈[0,1]. The 

best sensor network ( )j

b
P  is assumed to be the network  

in which all the process variables of interest can be 

completely measured with the minimum variances using 

the most accurate devices available. 

Moreover, to increase the evaluation accuracy of the 

weighted function measure, the following true relative 

standard deviation of each process variable is used 

instead of the absolute covariance matrix ( )j
3,cP : 

��
�
�

�

�

��
�
�

�

� −
λ+= �

∈Sj

j
b

j
3,c

j
S
P

iablevarprocessjththeofvaluestatesteady

PP

1d (23) 

This measure indicates a better representation for the 

error covariance of each individual process variable. 

Because, it provides a normalized measure irrespective of 

the magnitude of each individual process variable. 

 

System model transformation for sensor placement 

minimize the measurement errors (vk) which are 

mainly due to the intrinsic quality of the available 

measuring devices. As a result, a possible connection 

between the sensor placement in the designed network 

and the Kalman filter has been suggested [13] via the 

diagonal elements of the measurement covariance matrix 

R. When a process variable is going to be measured by a 

physical sensor, the relevant measurement variance is 

placed in the matrix R, but when it is not measured or 

observed through other measurements, a high variance 

(usually 1000 %) is assigned. The design procedure is to 

choose sensors with different measurement variances to 

accomplish specified desired goals such as performance 

and/or cost. 

In classical control, manipulated variables uk are 

treated as known inputs with distinct entry in the system 

state-space model (Eqn. (1)). This distinction between 

state and manipulated variables, however, is not justified 

from the monitoring perspective using the Kalman filter 

estimation procedure for sensor placement. Therefore,  

an augmented state variable vector [ ]kk
*
k x,ux =  is 

developed by considering the manipulated variables as 

state variables. To implement this view, the manipulated 

inputs are assumed to be states without dynamics but 

governed by the following stochastic auto-regressive 

model equation: 

1k1kk wuu −− +≈                                                          (24) 

This assumption changes the linearized model 

formulation, described by Ak, Bk, and Hk matrices, to the 

following augmented state-space model: 

*
1k

*
1k

**
k wxAx −− +=                                                   (25) 

*
1k

*
k

**
k vxHy −+=                                                        (26) 

Where matrix Bk, has been dropped and the new 

transition state matrix is defined as follows: 

	
	



�

�
�



�
=

×

×

×

×

xu

xu

uu

uu

nn

nn

nn

nn
*

A

O

B

I
A                                              (27) 

Where nx and nu denote the dimensions of the state 

(xk) and manipulated variables (uk), respectively. 

 

States observation of the measurement system 

Performance of a measurement system with any set of 

selected sensors can be evaluated by the sensor network 

measure given in Eqn. (23). This procedure, however, 

requires all the variances of the involved process 

variables in the set S to be already estimated through the 

Kalman filter algorithm. To ensure that the Kalman filter 

converges to an acceptable unique value, the process 

variables should be strictly observable. The Kalman filter 

can also provide the estimation of any unmeasured but 

observable variable with its variance. This is done by 

assigning initial infinite variance to the corresponding 

positions of R. It is additionally necessary to explicitly 

modify H* for the unmeasured variables by setting the 

corresponding columns equal to zero. The error variance 

of  an  unobservable  variable,  however will tend towards  
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infinity. Therefore, process variable observability 

condition has a direct impact on the Kalman filter 

performance whose proper operation is a perquisite to the 

sensor network evaluation procedure. A simple way to 

check the observability of all the desired process 

variables is to generate the observability matrix 

(obsv(A*,H*)). The rank of this observability matrix 

shows the number of observable state variables. If it is 

not full row rank, it indicates that the Kalman filter will 

not converge to a unique value for the error state 

covariance matrix from different initial conditions. 

 

Sensor network design objective 

A designer of sensor network has several potential 

objectives to choose from, depending on the desired 

process requirements. Some of the most important ones 

are as follows [7]: 

1-Cost: The most common objective function used in 

every design is the sum of the annualized capital 

investment cost and the operating cost. The simplest 

objective in the case of sensor network design has been 

the overall annualized investment cost. Whereas, the 

operating costs that are related to electricity consumption 

have always been neglected, leaving maintenance costs as 

the primary factor. 

2-Estimability: This term has usually been used to 

designate the ability to estimate a particular process 

variable using either hardware or software means. This 

objective can be used as a substitute goal in the absence 

of more sophisticated goals. 

3-Precision: In many cases, specific levels of 

precision can be developed for particular process 

variables of interest in a measuring system. For example, 

accounting might be interested in closing the material 

balance within a certain percentage or even request that 

the precision of each stream crossing battery limits has a 

particular value. Parameter estimation is also a software-

based activity for which the parameter precision depends 

on the set of sensors used. 

Although all these candidate goals may seem equally  

important, cost has been the traditional objective function 

being used in every sensor network design case. The 

unknowns of this design problem are the number and 

location of measurements as well as the type, precision, 

and reliability of each instrument. An adequate cost 

function  for  a  cost-optimal  design  of  a  precise  sensor  

network, which is considered in this paper, is as follows: 

�
�
�

�
�
�
�

�
�
∈Si

iiqCMin                                                              (28) 

�
�
�

∈∀σ≤σ

=ψ

S)q(

1)S(
.t.s

iiiii

 

In this formulation, it is assumed that there is only one 

potential measuring device for each process variable, 

hence, qi∈[0,1] represents elements of a binary vector (q) 

indicating that a sensor is located in process variable i 

and Ci denotes the cost of each sensor. The precision 

constraint states that the variance (σii=Pc
i) of the 

estimated value of variable ix̂  has to be kept lower than a 

certain threshold *
iiσ  for each variable or parameter in the 

set S. 

Another objective which is used in this paper is to 

maximize the sensor network performance (dp
s), given  

in Eqn. (23), by satisfying some desired cost and 

observability requirements as a set of additional 

constraints. This can be accomplished by the following 

conditional cost function [13]: 

( )s
p

S
dmax

ii

                                                                       (29) 

( )
��

�
�

�

≤

=ψ

�
i

maxiji CSC

1)S(

.t.s  

Where Sij is an integer variable which indicates the 

placement of sensor type i at network location j (j∈S). 

When a process variable is measured, a sensor type with 

its corresponding variance error (σi
2) is allocated in R. 

But, when a process variable is not measured, a dummy 

sensor with an infinite variance (σi
2→∞) is selected, 

which has a null cost. 

As a consequence, the sensor network performance 

given in  Eqn. (23) can be maximized by varying the 

diagonal elements of matrix R subject to a cost bound 

Cmax. Associated Cmax is used to obtain a curve that can 

show the best performance of the chosen sensor network 

according to a desired cost constraint. To draw this curve, 

Cmax is increased repeatedly by a small amount up to the 

maximum cost available. 

ψ(s) is another additional algorithmic constraint 

which relates to observability. Its value is equal to one 

when  the  set  of  feasible  sensor  networks allows one to  
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observe all the selected process variables in the set S. 

However, if one of the selected variables is not observable, 

leading to the divergence of the estimated variance 

through the EKF algorithm, its value is set to zero. 

 

Optimization using a Genetic searching algorithm 

There are different approaches to solve a constrained 

optimization problem. Selecting an appropriate approach, 

however depends on the size of the problem. For 

instance, consider sensor network design problem for a 

plant with J sensor locations. Assuming that each 

candidate process variable at each sensor location can be 

measured by choosing among I types of sensors with 

different cost and accuracy. This leads to (I+1)J possible 

sensor network solutions. As a consequence, the size of 

the optimization problem becomes highly complex for 

medium and large scale plants, requiring a vast amount of 

computational time to proceed. In most real life 

problems, however, near optimal solutions that can be 

generated quickly are more preferred. Thus, genetic 

algorithm (GA) is an appropriate searching method to be 

used for solving the constrained optimization problem 

with highly complex combinatorial features. 

In classical formulation of GA, a set of N candidate 

solutions are generated randomly as the initial population. 

To do this, each initial individual potential solution or 

chromosome is coded as a vector in the multi-

dimensional search-space. The goodness of each resulting 

solution as individual is evaluated by using a pre-

specified fitness criterion. Selecting all the proper 

chromosomes as the best possible solutions in the current 

population, a new generation of individuals is created 

from them by using crossover and mutation operators. 

To implement the GA searching method for solution 

of the sensor network design problem, each gene in the 

chromosome is taken as a process variable which can be 

measured once using a single sensor selected from a 

specific set of sensors with different cost and accuracy. In 

this way, the length of each chromosome is equal to the 

number of variables that can be measured (J). For a 

location with no sensor, a dummy sensor with null cost 

and a very low accuracy is considered. Therefore, the 

value of each gene can vary from 0 to I, where I indicates 

the number of available sensor types in the design. 

The fitness of each potential solution or individual in 

each generation is assessed based on the design 

performance   criterion,   that   is   Eqn. (28) or  Eqn. (29).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: CSTR process. 

 

If a potential solution or sensor network is feasible, its 

corresponding objective function value is considered for 

fitness evaluation. However, if the individuals involve 

any unfeasibility, the objective function value is divided 

by a very small number (e.g. 10-10), and the sensor 

network fitness is set near zero. It should be noted that 

the sensor type is associated with its characteristics (i.e., 

cost and accuracy)during the feasibility and fitness 

evaluation procedure. 

In this research, the MATLAB GA toolbox developed 

by the University of Sheffield [16] has been used. In this 

algorithm, new populations are generated by selecting  

G individuals from the initial population using the 

roulette wheel selection scheme and two point crossover 

and mutation operators. The algorithm is terminated if the 

number of generations reaches a predefined maximum 

value (NG). 

 

SIMULATION  CASE  STUDY 

The following CSTR benchmark problem, introduced 

by Bhushan et al. [17], has been considered in this 

research to study the performances of the presented 

sensor network design methods, under different 

conditions. 

The process involves an exothermic liquid-phase 

reaction:  A(l) → B(l) + C(g). As shown, the temperature 

controller (TC) controls the temperature of the reactor by 

manipulating the inlet flow rate of the coolant flowing 

through the jacket. The level in the reactor is controlled 

by the level controller (VC) which manipulates the outlet 

flow rate from the reactor. The  pressure  in the reactor  is  

Product pump 

Coolant 

Reactor coolant 

pump 

 

To stripper 

section 

From feed section Main 

reactor 

Pressure Controller 

Fc , Tc 

VL 

F3 F2 

Fci, 
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F4 
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VP 
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(TC) Temp. Controller 
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 (VC) 

Material flow 
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controlled by changing the vent gas flow rate. Both  

the reactor and the jacket are modeled with perfectly 

mixed-tank dynamics. The CSTR model equations are as 

follows: 

Global Mass Balance: 

dt

dV
FFi =−                                                                 (30) 

Component Mass Balance (CA): 

( )
dt

dC
rCC

V

F A
AAAi

i =−−                                        (31) 

Overall Heat Balance on the Reactor: Result obtained 

assuming constant heat capacities and densities: 

( )
( ) ( )

dt

dT

CV

TTUA

C

Hr
TT

V

F

p

c

p

A
i

i =
ρ

−
−

ρ

∆−
+−              (32) 

Overall Heat Balance on the Jacket: 

( )
( )

dt

dT

CV

TTUA
TT

V

F c

pjjj

c
ci

j

c =
ρ

−
−+−                           (33) 

Gas Phase Balance: 

dt

dn
FVr vgA =−                                                           (34) 

Reaction Rate: 

RTE
0AdA ekCCr −=                                                    (35) 

Elemental Mass Balances in Valves and Pumps: 

Assuming no accumulation: 

�
�

�
�

�

=−

=−

=−

0FF

0FF

0FF

c4

2

23

                                                                 (36) 

Pressure in the Reactor: where Vg is the vapor space 

and is assumed constant, assuming ideal behavior: 

nRTPVg =                                                                   (37) 

The CSTR model parameters together with their 

nominal operating conditions are described in table 2. 

As shown, process consists of 5 states (F, CA, T, TC, 

P) and 15 measurable variables (Fi, Ti, CAi, FC, F, Fvg, TCi, 

F2, F3, F4, V, CA, T, TC, P). As can be seen, the fifth state 

(n) has been replaced by pressure (P) for easier 

measurement. 

Table 2: Nominal values for the CSTR. 

 

Notation Variable 
Steady state / 

Constant value 

V Volume of reactor 48 ft3 

CA Reactant concentration in reactor 
0.2345 lb.mol of 

A/ft3 

T Reactor temperature 600°R 

F Outlet flow rate 40 ft3/h 

N No. of moles of vapor 28.3657 lb. mol 

P Pressure in vapor space 2116.79 lb/ft2 

Fvg Vent flow rate 10.6137 lb. mol/h 

Fi Inlet feed flow rate 40 ft3/h 

CAi Inlet reactant concentration 0.5 lb. mol of A/ft3 

Tc Jacket temperature 590.51°R 

Fc Coolant flow rate 56.626 ft3/h 

Ti Inlet feed temperature 530°R 

Vj Volume of jacket 3.85 ft3 

K0 Frequency factor 7.08× 1010
 h-1 

Cd Catalyst activity 1 

E Activation energy 29900 btu/lb. mol 

R Universal gas constant 1.99 btu/lb. mol °R 

U Heat-transfer coefficient 150 btu/h ft2
 °R 

A Heat-transfer area 150 ft2 

Tci Inlet coolant temperature 530°R 

∆H Heat of reaction -30,000 btu/lb. mol 

Cp Heat capacity (process side) 0.75 btu/lbm °R 

Cpj Heat capacity (coolant side) 1 btu/lbm °R 

ρ Density of process mixture 50 lbm/ft3 

ρj Density of coolant 62.3 lbm/ft3 

Vg Volume of vapor space 16 ft3 
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Table 3: 1st Comparison of precision required for CA,T,F (B1). 

 
Fi Ti CAi Fc F Fvg Tci F2 F3 F4 V CA T Tc P 

Measurement    × ×      × × × × × 

EKF 1.44 3.26 2.44 0.17 0.20 - 1.73 0.17 0.17 0.17 0.25 0.32 0.21 0.19 1.90 

[17] 1 18.56 13.33 1 1 25.05 10.94 1 1 1 - 1 1 1 - 

a (Precision threshold) %2�,%1�,%2
*
F

*
T

*
CA ≤≤≤σ . 

 

Table 4: 2nd Comparison of precision required for CA,T,F  (B2). 

 
Fi Ti CAi Fc F Fvg Tci F2 F3 F4 V CA T Tc P 

Measurement   × × × ×     × × × × × 

EKF 1.604 4.136 0.161 0.159 0.155 0.156 2.027 0.155 0.155 0.159 0.248 0.292 0.188 0.211 0.253 

[17] 0.923 16.729 0.658 1 0.923 0.916 8.23 0.923 0.923 1 - 0.935 0.056 1 - 

a Precision threshold %0�,%0�,%0
*
F

*
T

*
CA 95.95.95. ≤≤≤σ . 

 

RESULTS  AND  DISCUSSION 

Simulation study I 

In this simulation study, the CSTR problem is used  

to test the observability and data reconciliation  of the 

EKF algorithm. The process has already been used by 

Bagajewicz et al. [18] to design a sensor network for fault 

detection and precision objectives. However, the data 

used in that work has been based on the Jacobian 

matrices around the nominal process steady-state values. 

Although this reduces the computations, it can lead to 

erroneous results when the actual operating condition 

diverges from the nominal steady-state values beyond the 

limits with time evolution. This divergence phenomenon 

has shown itself when the state reconciliation  test was 

performed using the proposed approach in [13] which is 

based on the standard Kalman filtering. 

In this study, the data reconciliation  is based on the 

EKF algorithm which continuously updates the linearized 

model at each time instant around the most recent 

operating condition estimates. 

Two studies were run based on the same conditions 

reported in [17] requiring precision in three key variables 

(CA, T, and F) with two different sets of sensors.   

Table 3 shows the data reconciliation  results for an 

assumed optimal set of sensors indicated by cross 

symbols (x) with the precision requirements of 

%2%,1%,2 *
F

*
CT

*
CA ≤σ≤σ≤σ . 

Table 4  shows  similar data  reconciliation  results  for  

a higher precision requirement of %,95.0*
CA ≤σ  

%59.0%,95.0 *
F

*
T ≤σ≤σ . 

The data shown in tables 3 and 4 demonstrates that 

more accurate results have been obtained via the data 

reconciliation  of the EKF algorithm compared with the 

similar results reported in [17]. 

 
Simulation study II 

The main objective in this simulation study is to 

design a sensor network with minimum cost which 

satisfies the observability constraint together with some 

desired precision thresholds in three key process variables 

(CA, T, and F) under the same conditions declared in [17]. 

It is assumed that the cost of sensor for each variable is 

100. The GA parameters were set to initial population 

Nind=20, number of generations NG=20, number of childs 

in each generation G=18, crossover probability PC=0.7, 

mutation probability Pm=PC/Lind=0.0467, and scaling 

factor Sf=10-10. 

The GA algorithm took 32 seconds mean time to 

converge. In order to test the convergence property of the 

GA algorithm, the simulation study was repeated 10 

times taking 5 min and 19 seconds. Table 5 summarizes 

the obtained results for the lower precision requirements 

specified by %2%,1%,2 *
F

*
T

*
CA ≤σ≤σ≤σ . 
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Table 5: Minimum cost Genetic Algorithm results for  precision threshold %2�%,1�%,2�
*
F

*
T

*
CA ≤≤≤ . 

 

No. 1 2 3 4 5 6 7 8 9 10 

Measured Process 

variables 

3,4,7,8, 

12,14,15 

2,4,6,7,9

,12,15 

3,8,10,11,1

2,14,15 

2,7,9,12,

13,14,15 

3,6,8,10,

12,13,15 

2,7,8,10,12,

14,15 

3,4,6,11,12,

13,15 

3,4,7,9, 

12,14,15 

3,8,10,11,1

2,14,15 

4,5,7,11, 

12,13,15 

Accuracy of 

desired  process 

variables 

F 0.1684 0.1227 0.1423 0.1477 0.0953 0.1694 1.8974 0.1285 0.1161 0.1135 

C

A 
0.2844 0.3592 0.2887 0.2961 0.2930 0.3138 0.2290 0.3039 0.3002 0.3273 

T 0.2524 0.1916 0.1735 0.2123 0.1698 0.1853 0.1546 0.1819 0.1572 0.1423 

cost 700 700 700 700 700 700 700 700 700 700 

 

Table 6: Minimum cost Genetic Algorithm results for  precision threshold %0�%,0�%,0�
*
F

*
T

*
CA 95.95.95. ≤≤≤ . 

 

No. 1 2 3 4 5 6 7 8 9 10 

Measured Process 

variables 

3,6,8,10,

11,12,15 

7,9,11,12,1

3,14,15 

4,5,6,7,12,1

3,15 

1,3,6,10,

12,13,15 

2,3,4,7,9

,12,15 

3,4,5,7, 

12,13 

1,2,4,6,7,13

,15 

2,7,8,11,12,

14,15 

1,2,4,6, 

12,13,15 

6,7,9,10,12,

13,15 

Accuracy of 

desired  process 

variables 

F 0.0709 0.0819 0.0657 0.1061 0.0821 0.0654 0.1172 0.0702 0.0972 0.0824 

C

A 
0.2432 0.1793 0.2096 0.2081 0.2141 0.2076 0.2859 0.1607 0.2011 0.2100 

T 0.1282 0.0579 0.0843 0.0866 0.0998 0.0857 0.1347 0.0661 0.0880 0.0843 

cost 700 700 700 700 700 700 700 700 700 700 

 

Similar simulation tests were run for the higher 

precision    requirements   specified   by   %,95.0*
CA ≤σ  

%95.0,95.0 *
F

*
T ≤σ≤σ . The obtained results have been 

summarized in table 6. 

Examining the results shown in tables 5 and 6 leads to 

the following general basic observations: 

The GA algorithm has been converged to 700 for both 

precision requirements, as the optimal solution in all the 

trials. 

There are 215=32768 possible solutions in this 

simulation study. Examining all these possible sensor 

networks with an exhaustive search will take about 1 hour. 

This time duration is so high for such a medium-sized 

problem compared to 32 seconds mean time lasting in the 

GA search. 

It is noted that the design could not be done via the 

proposed approach based on the standard Kalman 

filtering in [13] due to the state divergences in the data 

reconciliation  stage. 

 

Simulation study III 

In this study, the main objective is to design a sensor 

network based on the maximum performance requirement 

with constraints on total instrument. For this purpose, five 

sets of sensors have been considered similar to the 

previous simulation case study. To make the design 

problem more practical, wide variety of available sensors 

has been utilized in the design. 

The flow-meter variances are [0.1 %, 0.25 %, 0.5 %, 

1 %, 2 %] and their corresponding costs are [40, 34, 16, 

10, 5]. The temperature and pressure variances are [1 %, 

2 %] with corresponding costs as [2,1.5]. The concentration 

variances are [1 %, 2 %] with corresponding costs as [20, 

10]. Finally, the volume-meter variances and costs are 

[0.1 %, 0.5 %, 1 %, 2 %] and [10, 8, 5, 3], respectively. 

Once the design is done assuming that all the 

interested process variables have the same degree of 

importance, indicated by λj=1, j∈S, as recommended in 

[13]. Next, the design procedure is repeated under the 

same conditions except that the process variables have 

different degrees of importance as proposed in this paper. 

The key process variables are indicated by λj=1 while the 

remaining variables are grouped into two different 

categories shown by λj=0.5 for low cost sensor types 

(temperatures and pressures) and λj=0.1 for the rest 

(flows  and  levels). Finally,  the  weighting  factor vector  
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Fig. 2: Cost-Performance trade-off curve for constant λλλλ (a) and variable λλλλ (b). 
 

will be set to λ=[0.1, 0.5, 0.1,0.1, 1, 0.1, 0.5, 0.1, 0.1, 0.1, 

0.1, 1, 1, 0.5, 0.5]. 

According to the proposed sensor placement problem 

statement, the number of sensor network alternatives is so 

high (67×37×51≅3.06×109). In this case, the application of 

an exhaustive search is unpractical because it would take 

years. The optimization problem has been solved using 

the proposed methodology. The GA parameters were  

set to Nind=50, Ng=50, G=48, Sf=10-10, pc=0.7 and 

pm=Pc/Lind=0.0467 for both simulation design tests. 

Since the GA converges quickly, it allows to scan the 

restriction space, and in doing so to solve the problem, 

Costmax is increased from 10 to 340 in steps of 10. This 

scan has done 10 times in order to check the feasibility of 

the algorithm. The trade-off between cost and 

performance are shown in Figs. 2 (a) and (b). The time 

taken for each design test was 18 h and 37 s, which 

corresponds to a mean time of 3 min and 11 s for each 

Costmax to converge. The tradeoff curves help the user to 

select a sensor network with desired performance and 

investment. 

By examining the results shown in Figs. 2 (a) and (b), 

the following key observations can be concluded: 

The minimum achievable performance for a feasible 

design is about 85 % with the cost 20 for the variable λj 

design approach, while this performance will be about  

55 % with the same cost for the constant λj design 

approach. 

The convergence rate for the variable λj design 

performance to the ideal 100 % is faster than the rate 

corresponding the constant λj approach. Fig. 2 (b) 

indicates that the design performance curve reaches near 

100 % for the cost of 120 while this maximum 

performance approached for the cost of 200 in Fig. 2 (a). 

It is noted that higher cost solutions for the near 

maximum performance 100 % in the both design tests 

indicates higher redundancy in the designed measurement 

network. 

In order to evaluate the performance of designed 

networks, four points corresponding to the variable λ 

trade-off curve has been selected at the maximum 

performance of investment constraints 20, 100, 170 and 

340. Fig. 3 demonstrates the estimated key variables in 

the selected points versus real signals of key variables. 

The selected networks has been examined with CSTR 

case study with step changes (V=50, P=2126.8, T=610) 

on sample interval 1600. Examining these signal 

behaviors indicates that more investment on sensor 

network design leads to more accurate performance 

judged by lower error variance of these key variables. 

 

CONCLUSIONS 

The methodology proposed in [13] for sensor network 

design has been modified and extended to cater for non-

linear dynamic systems. The resulting methodology 

incorporates a modified EKF filtering as its dynamic data 

reconciliation  technique. This enables the design method 

to be applied for non-linear dynamic processes. 

In the actual implementation of the Kalman filter, the 

measurement noise covariance R is given by the intrinsic 

quality of the measuring devices. However, the process 

noise covariance (Q) which affects the transient and 

steady-state operation of the data reconciliation  can not 

be determined directly. Hence, its magnitude has been 

assumed to be fixed in [13]. This can lead to convergence 

problems due to possible errors in the model transition 

matrix [13]. In this paper, the time propagation equation 

for the  covariance matrix (Pk) has  been  solved using the  
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Fig. 3: Estimated key variables (F, CA, T) versus real signals. Cost constraint 20 (a), Cost constraint 100 (b),  

Cost constraint 170 (c), Cost constraint 340 (d). 

(a) 
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transition matrix technique [14] which enhances the 

numerical robustness of the resulting discrete-time 

Kalman filter by preserving both the symmetry and the 

positive definiteness of covariance matrix (Pk). This 

implementation allows  the  process noise covariance 

matrix (Q) to be calculated at each sampling interval 

based on the most recent state model transition matrix. 

To evaluate the performance of each individual 

potential design solution, a weighted function measure 

has been proposed. This approach is practically more 

attractive and provides the user the ability to exercise 

different weighting factors on process variables based on 

their operational and economical roles in the design 

objective. Moreover, to increase the evaluation accuracy 

of the weighted function measure, the true relative 

standard deviation of each involved variable has been 

used instead of the estimated error covariance matrix 

which can be accurate only up to the first-order for any 

system non-linearity. This provides a better indicating 

normalized measure which causes all the process 

variables to affect equally in design procedure 

irrespective of their absolute magnitudes. Simulation 

results demonstrate that the presented methodology 

provides a very promising sensor network design tool for 

non-linear dynamic processes. It was shown that the 

design can lead to the most suitable investment situation 

where higher performances can be obtained at lower 

costs. 
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