Photodegradation of HMX and RDX in the Presence of Nanocatalyst of Zinc Sulfide Doped with Copper

Document Type : Research Article

Authors

Faculty of Science, Malek-Ashatar University of Technology, Shahin Shahr, I.R. IRAN

Abstract

Nanoparticles of zinc sulfide as undoped and doped with copper were used as photocatalyst in the photodegradation of HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) as nitramine explosives under UV and Vis irradiations. Photoreactivity of doped zinc sulfide was varied with dopant, mole fraction of dopant to zinc ion, pH of solution, dosage of photocatalyst and concentration of explosive. The characterization of nanoparticles was studied using XRD patterns, UV-Vis spectra and TEM image. The maximum degradation efficiency was obtained in the presence of Zn0.95Cu0.05S as nanophoto-catalyst. The effect of dosage of photocatalyst was studied in the range of 50-200 mg/L. It was seen that 150.0 mg/L of photocatacyst is an optimum value for the dosage of photocatalyst. The most degradation efficiency was obtained in neutral pH of 7.0 with study of photodegradation in pH amplitude of 2-12. In the best conditions, the degradation efficiency of HMX and RDX was obtained 92-94 %. A gradual decrease in the degradation efficiency was observed at the first two cycles.

Keywords

Main Subjects


[1] Heilmann, H.M., Weismann, U. and Stenstrom M.K., Environ. Sci. Technol., 30, 1485 (1996).
[2] Liu, Z., He, Y., Li, F. and Liu, Y., Environ. Sci. Pollut. Res. Int., 13, 328 (2006).
[3] Hundal, L.S., Singh, J., Bier, E.L., Shea, S.D., Comfort, S.D. and Powers, W.L., Environ. Pollut., 97, 55 (1997).
[4] Burton, D.T., Turley, S.D.and Peters, G.T., Chemosphere, 29, 567 (1994).
[5] Peters, G.T., Burton, D.T., Paulson, R.L. and Turley, S.D., Environ. Toxicol. Chem., 10, 1073 (1991).
[6] Etnier, E.L. and Hartley, W.R., Regulatory Toxicol. Pharmacol., 11, 118 (1990).
[7] Hu, C. and Wang, Y.Z., Chemosphere, 39, 2107 (1999).
[8] Kiwi, J., Pulgarine, C.M. and Gratzel, P.P., Appl. Catal. B: Environ., 3, 85 (1993).
[9] Hoffman, M.R., Martin, S.T., Choi, W. and Bahnemann, D.W., Chem. Rev., 95, 69 (1995).
[10] Aarthi, T., Narahari, P. and Madras, G., J. Hazard. Mater., 149, 725 (2007).
[11] Kansal, S.K., Singh, M. and Sud, D., J. Hazard. Mater., 141, 581 (2007).
[12] Liu, Y., Chen, X., Li, J. and Burda, C., Chemosphere, 61, 11 (2005).
[13] Kamat, P.V. and Meisel, D., Current Opinion in Colloid & Interface Sci., 7, 282 (2002).
[14] Yang, P., Lu, M., Xu, D., Yang, D., Chang, J., Zhou, G. and Pan, M., Appl. Phys. A, 74, 257 (2002).
[15] Warad,  H. C.,  Ghosh,  S. C.,  Hemtanon,  B., Thanachayanont, C. and Dutta, J., Sci. and Tech. Advanced Materials, 6, 296 (2005).
[16] Daneshvar, N., Salari, S. and Khataee, A.R., J. Photochem. Photobiol. A, Chem., 157, 111 (2003).
[17] Choi, J.K., Son, H.S., Kim, T.S., Stenstrom, M.K. and Zoh, K.D., Environ. Technol., 27, 21 (2006).
[18] Beydoun, D., Amal, R., Low, G. and McEvoy, S., J. Nanoparticle Res., 1, 439 (1999).
[19] Barakat, M.A., Schaeffer, H., Hayes, G. and Ismat-Shah, S., Appl. Catal. B: Environmental, 57, 23 (2004).
[20] Shah, S.I., Li, W., Huang, C.P., Jung, O. and Ni, C., Colloquium, 99, 6482 (2002).
[21] Zhang, F.L., Zhao, J.C., Shen, T., Hidaka, H., Pelizzetti, E. and Serpone, N., Appl. Catal. B:Environmental, 15, 147 (1998).
[22] Fu, H., Pan, C., Yao, W. and Zhu, Y., Phys. Chem. B, 109, 22432 (2005).
[23] Stafford, U., Gray, K.A. and Kamat, P.V., J. Catalysis, 167, 25 (1997).
[24] Goncalves, M.S.T., Oliveria-Campos, A.M.F., Pinto, E.M.M.S., Plasencia, P.M.S. and Queiroz, M.J.R.P., Chemosphere, 39, 781 (1999).
[25] Wang, W.Y. and Ku, Y., Colloids and Surfaces A: Physicochem. Eng. Aspects, 302, 261 (2007).
[26] Wu, C., Liu, X., Wei, D., Fan, J. and Wang, J., Water Research, 35, 3927 (2001).
[27] Wang, C.C., Lee, C.K., Lyu, M.D. and Juang, L.C., Dyes and Pigments, 76, 817 (2008).