One Pot Synthesis of Polyhydroquinolines Catalyzed by Sulfonic Acid Functionalized SBA-15 as a New Nanoporous Acid Catalyst under Solvent Free Conditions

Mohammadi Ziarani, Ghodsi*+
Department of Chemistry, University of Alzahra, Tehran, I.R. IRAN

Badiei, Ali Reza; Khaniania, Yeganeh
Faculty of Chemistry, University of Tehran, Tehran, I.R. IRAN

Haddadpour, Mahbobeh
Department of Chemistry, University of Alzahra, Tehran, I.R. IRAN

ABSTRACT: Sulfonic acid functionalized SBA-15 (SBA-Pr-SO3H) as a new nanoporous acid catalyst was used in the one-pot synthesis of polyhydroquinolines derivatives via the Hantzsch four component condensation reaction of aldehydes, β-ketoesters, dinedone and ammonium acetate under solvent free conditions with short reaction time in excellent yields. SBA-Pr-SO3H was proved to be an efficient heterogeneous nanoporous solid acid catalyst (pore size 6 nm), which could be easily handled and removed from the reaction mixture by simple filtration, and also recovered and reused without loss of reactivity.

KEY WORDS: Nanoporous solid acid catalyst, Sulfonic acid functionalized SBA-15, Polyhydroquinolines, Solvent free conditions, Dimedone.

INTRODUCTION

1,4-Dihydropyridines possess a variety of biological activities, such as vasodilator, bronchodilator, antiatherosclerotic, antitumor, geroprotective, hepatoprotective, and antidiabetic agents [1-2]. Several efficient conditions and methods have been developed for the synthesis of 1,4-dihydropyridines such as Hantzsch method [3], the use of microwave [4], ionic liquid [5], high temperature in refluxing solvent [6], TMSCI–Nal [7], metal triflates Yb(OTf)3 [8], molecular iodine [9] and organocatalysts [10]. However, the use of high temperatures, expensive metal precursors and long reaction times are limiting these methods. Thus,
the development of a simple, efficient and versatile method for the preparation of 1,4-dihydropyridine derivatives is a great tendency on this research area and the entering of further improvement towards the milder reaction conditions and higher product yields is of importance in this process.

The high ordered nanoporous silica, such as MCM-41 [10], LUS-1 [11,12] and SBA-15 [13] are unique inorganic solid supports that have very high surface area with controllable pore sizes between 2 to 30 nm. They can be employed as catalysts [14,15], for the preconcentration of metals [16-18], and as modified carbon electrodes [19-21]. The SBA-15 is a new nanoporous silica with hexagonal structure, large pore, high surface area, high thermal stability and also diffusion free due to thicker pore walls and larger pore size respectively. This can be prepared by using commercially available triblock copolymer pluronic P123 as a structure directing agent [13]. Integration of acidic functional groups (e.g., -SO$_3$H) into SBA-15 has been explored to produce promising solid acids. The sulfonic acid functionalized SBA-15 were usually synthesized through direct synthesis or post-grafting [22-23]. There have been only a few reports about the application of several types of sulfonic acid functionalized ordered mesoporous silicas as nano acid catalyst in chemical transformations [24]. For example, SBA-Pr-SO$_3$H has been used in the synthesis of chromenes from chromanol [25], and the von Pechmann reaction [26].

In this work, we would like to explore the catalytic activity of the Sulfonic acid functionalized SBA-15 (SBA-Pr-SO$_3$H) as a highly efficient heterogeneous nanoporous acid catalyst towards the one-pot synthesis of polyhydroquinolines.

**EXPERIMENTAL SECTION**

**Apparatus**

Gc-Mass analysis was performed on a Gc-Mass model: 5973 network mass selective detector, Gc 6890 Agilent. IR spectra were recorded from KBr disk using a FT-IR Bruker Tensor 27 instrument. Melting points were measured by using the capillary tube method with an electro thermal 9200 apparatus. The $^1$H-NMR (250 MHz) was run on a Bruker DPX, 250 MHz. Nitrogen adsorption and desorption isotherms were measured at -196 °C using a Japan Belsorb II system after the samples were vacuum dried at 150°C overnight. Surface areas were calculated by the Brunauer-Emmett-Teller (BET) method, and pore sizes were calculated by the Barrett-Joyner-Halenda (BJH) method. Thermogravimetry analysis (TGA) was carried out in Perkin Elmer Pyris Diamond instrument from ambient temperature to 800 °C using 20 °C/min ramp rate.

**Preparation of SBA-15**

At First, pluronic P123 triblock copolymer surfactant (EO$_{20}$PO$_{70}$EO$_{20}$, Mw = 5800) (4.0 g) was dissolved in 30 g of water and 120 g of 2 M HCl solution. Then, TEOS (tetraethyl orthosilicate) (8.50 g) was added to reaction mixture which was stirred for 8 h at 40 °C. The resulting mixture was transferred into a teflon-lined stainless steel autoclave and kept at 100 °C for 20 h without stirring. The gel composition P123: HCl: H$_2$O: TEOS = 0.0168: 5.854: 162.681: 1 in molar ratio. After cooling down to room temperature, the product was filtered, washed with distilled water and dried overnight at 60 °C in air. The as-synthesized sample was calcinated at 550 °C for 6 h in air atmosphere to remove the copolymer template.

**Functionalization of the SBA-15 by organic groups**

Functionalization of the SBA-15 catalyst was performed according to Fig. 3. The calcinated SBA-15 (2 g) and (3-mercaptopropyl)trimethoxysilane (10 mL) in dry toluene (20 mL) were refluxed for 24 h. The product was filtered and extracted for 6h in CH$_2$Cl$_2$ using a soxhlet apparatus, then dried under vacuum. The solid product was oxidized with H$_2$O$_2$ (excess) and one drop of H$_2$SO$_4$ in methanol (20 mL) for 24 h at rt and then the mixture was filtered and washed with H$_2$O, and acetone. The modified SBA-15-Pr-SO$_3$H was dried and used as nanoporous solid acid catalyst in the following reaction.

**General method for the preparation of polyhydroquinolines derivatives**

The SBA-Pr-SO$_3$H (0.05 g) was activated in vacuum at 100 °C and then after cooling to room temperature, aldehyde 1 (1.0 mmol), 5,5-dimethyl-1,3-cyclohexanediene 2 (1.0 mmol), ethyl acetoacetate 3 (1.0 mmol), ammonium acetate (1.5 mmol) were added to catalyst. Then the reaction mixture was stirred at 90 °C for 5-15 min and a solid product formed. After the completion of reaction as indicated by TLC, the resulting solid product was dissolved
in hot ethanol, filtered for removing the unsolvable catalyst and then the filtrate was cooled to afford the pure product as a yellow solid. The spectroscopic and analytical data for selected compounds are presented in the following part. The catalyst was washed subsequently with acetonitrile, diluted acid solution, distilled water and then acetone, dried under vacuum and re-used for several times without loss of significant activity.

2, 7, 7-Trimethyl - 5 - oxo-4-(2,3 - dichlorophenyl)-1,4,5,6,7,8 - hexa-hydroquinoline - 3 - carboxylic acid ethyl ester 4b

Yellow solid; m.p: 229-234 °C; IR(KBr): 3290, 3074, 2959, 1700, 1642, 1605, 1484 cm⁻¹. ¹H NMR (250 MHz, CDCl₃): δ = 0.96 (s, 3H, CH₃), 1.07 (s, 3H, CH₃), 1.15 (t, 3H, J=7Hz, CH₂CH₃), 2.14-2.33 (m, 4H, 2*CH₂), 2.35 (s, 3H, CH₃), 4.02 (q, 3H, J=7Hz, CH₂CH₃), 5.43 (s, 1H, CH), 5.76 (s, 1H, NH), 7.05 (t, 1H, J=7Hz, ArH), 7.21 (dd, 1H, ArH), 7.31 (dd, 1H, ArH). MS: m/z (%) 407 [M +.], 372, 326, 234.

2,7,7-Trimethyl-5-oxo-4-(3,4-dimethoxyphenyl)-1,4,5,6,7,8 - hexa-hydroquinoline-3-carboxylic acid ethyl ester 4m

Yellow solid, m.p: 208-211. IR (KBr): 3302, 3076, 2959, 1696, 1645, 1610, 1483 cm⁻¹. ¹H NMR (250 MHz, CDCl₃): δ = 0.95 (s, 3H, CH₃), 1.08 (s, 3H, CH₃), 1.21 (t, 3H, J = 7Hz, CH₂CH₃), 2.2-2.32 (m, 4H, 2*CH₂), 2.38 (s, 3H, CH₃), 3.80 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 4.08 (q, 2H, J= 7 Hz, CH₂CH₃), 5.01 (s, 1H, CH), 5.63 (s, 1H, NH), 6.68-6.76 (m, 2H, ArH), 6.92 (d, 1H, ArH). Ms: m/z (%) 399 [M⁺] 370, 354, 326, 262, 234.

RESULTS AND DISCUSSION

The classical method for the preparation of polyhydroquinolines derivatives involves the reaction of aldehydes with ethyl acetoacetate, and ammonia in acetic acid or in refluxing alcohol. However, this method suffers from several disadvantages such as long reaction times, excess of organic solvent, lower product yields and refluxing conditions. Therefore, after using MCM-41 in this synthesis by Nagarapu [27], and in continuation of our studies on the application of new acid catalysts in organic synthesis [28], we had the opportunity to explore the catalytic activity of nanoporous catalyst of SBA-Pr-SO₃H towards the synthesis of 1,4-dihydropyridines from aldehyde, dinedone, β-ketoesters, and ammonium acetate under solvent free conditions as shown in Fig. 1. The reaction has efficiently been carried out in excellent yields with short reaction time. The results were summarized in Table 1.
Table 1: The SBA-Pr-SO$_3$H catalyzed the synthesis of polyhydroquinoline derivatives.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Aldehyde</th>
<th>Product</th>
<th>Time (min)</th>
<th>Yield (%)</th>
<th>mp °C</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H$_2$COCl$_2$</td>
<td><img src="image" alt="" /></td>
<td>13</td>
<td>80</td>
<td>241-244</td>
<td>[29b]</td>
</tr>
<tr>
<td>2</td>
<td>H$_2$OCl$_2$</td>
<td><img src="image" alt="" /></td>
<td>13</td>
<td>80</td>
<td>229-234</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>O=CH$_2$CH$_2$</td>
<td><img src="image" alt="" /></td>
<td>12</td>
<td>90</td>
<td>204-206</td>
<td>[30]</td>
</tr>
<tr>
<td>4</td>
<td>H$_2$O</td>
<td><img src="image" alt="" /></td>
<td>12</td>
<td>85</td>
<td>231-233</td>
<td>[29b]</td>
</tr>
<tr>
<td>5</td>
<td>H$_2$OCH$_3$</td>
<td><img src="image" alt="" /></td>
<td>18</td>
<td>80</td>
<td>162-166</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>H$_2$O</td>
<td><img src="image" alt="" /></td>
<td>10</td>
<td>85</td>
<td>227-230</td>
<td>[31]</td>
</tr>
<tr>
<td>7</td>
<td>H$_2$OCH$_3$</td>
<td><img src="image" alt="" /></td>
<td>10</td>
<td>90</td>
<td>260-262</td>
<td>[31]</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>Details</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td><img src="image" alt="Structure 8" /></td>
<td>12 90 264-266 260-261 [32]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td><img src="image" alt="Structure 9" /></td>
<td>12 85 242-244 245-246 [29a]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td><img src="image" alt="Structure 10" /></td>
<td>12 90 239-240 238-240 [32]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td><img src="image" alt="Structure 11" /></td>
<td>10 85 242-244 242-244 [30]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td><img src="image" alt="Structure 12" /></td>
<td>10 90 207-209 -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td><img src="image" alt="Structure 13" /></td>
<td>10 90 208-211 --</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td><img src="image" alt="Structure 14" /></td>
<td>14 75 241-244 241-244 [29b]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The proposed mechanism was shown in Fig. 2. The polyhydroquinoline derivatives could be synthesized by two methods. The SBA-Pr-SO\(_3\)H catalyses subsequently the Knoevenagel type coupling of aldehydes with active methylene compounds and then the Michael type addition of intermediates together to provide the products [29a].

**Knoevenagel condensation**

*Preparation and characterization of catalyst*

Pure Nanoporous compound SBA-15 was synthesized according to the well-established method designed by Zhao & coworkers [13] with triblock poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) copolymer (Pluronic, EO\(_{20}\)PO\(_{70}\)EO\(_{20}\), P123) as the template. A schematic illustration for the preparation of SBA-Pr-SO\(_3\)H was shown in Fig. 3. First, the calcined SBA-15 silica was functionalized with (3-mercaptopropyl)trimethoxysilane (MPTS) and then, the thiol groups were oxidized to sulfonic acid by hydrogen peroxide.

The TGA analysis of SBA-Pr-SO\(_3\)H (Fig. 4) confirmed the amount of organic groups on SBA-15. The weight reduction of SBA-Pr-SO\(_3\)H in the temperature range between 200-600°C indicated that the amount of organic group was 1.2 mmol/g.

The nitrogen adsorption–desorption isotherms for SBA-15 and SBA-Pr-SO\(_3\)H are shown in Fig. 5. Both materials show type-IV adsorption behavior with the hysteresis loops appearing at relatively high pressure, suggesting that the prepared samples have regular mesoporous framework structures. Their texture properties are given in Table 2. The surface area, average pore diameter calculated by the BET method and pore volume of SBA-Pr-SO\(_3\)H are 440 m\(^2\) g\(^{-1}\), 6.0 nm and 0.660 cm\(^3\) g\(^{-1}\), respectively, which are smaller than those
Table 2. Porosimetry values for SBA-15 and functionalized SBA-15.

<table>
<thead>
<tr>
<th></th>
<th>Surface area (cm²/g⁻¹)</th>
<th>Pore volume (cm³/g⁻¹)</th>
<th>Pore diameter (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBA-15</td>
<td>649</td>
<td>0.806</td>
<td>6.2</td>
</tr>
<tr>
<td>SBA-SO₃H</td>
<td>440</td>
<td>0.660</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Fig. 4: Thermogravimetric analysis (TGA) of SBA-Pr-SO₃H.

Fig. 5: N₂ adsorption-desorption isotherms and pore size distribution (inset) for SBA-15 ( - - -) and SBA-Pr-SO₃H ( — — —).

of SBA-15 due to the immobilization of sulfonosilane groups into the pores.

CONCLUSIONS

In conclusion, an efficient synthesis of polyhydroquinolines derivatives has been achieved via a one-pot four component reaction of aromatic aldehydes, dimedone, β-ketoesters, and ammonium acetate under solvent free conditions using the reusable and environmentally benign sulfonic acid functionalized nanoporous SBA-15 as solid acid catalyst. The reasonable reaction time, very good to excellent yields, simple workup procedure, and environmentally friendly conditions are main merits of this method. Therefore SBA-Pr-SO₃H can be used as an efficient heterogeneous catalyst such as other catalysts in organic syntheses [33].

Acknowledgements

We gratefully acknowledge for financial support from the Research Council of Alzahra University and University of Tehran.

Received : Oct. 2, 2008 ; Accepted : July 29, 2009

REFERENCES

[1] (a) Godfraid T., Miller R., Wibo M., Calcium Antagonism and Calcium Entry Blockade, Pharmcol. Rev. 38, p. 321 (1986);
(b) Sausins A., Duburs G., Synthesis of 1,4-Dihydropyridines by Cyclocondensation Reactions, Heterocycles, 27, p. 269 (1988);
(c) Mager P.P., Coburn R.A., Solo A.J., Triggle D.J., Rothe H., QSAR, Diagnostic Statistics and Molecular Modelling of 1,4-Dihydropyridine Calcium Antagonists: A Difficult Road Ahead, Drug Des. Discovery, 8, p. 273 (1992);

[2] (a) Klusa V., Cerebrocrast, Neuroprotectant, Cognition Enhancer, Drugs Future, 20, p. 135 (1995);
(b) Bretzel R.G., Bollen C.C., Maester E., Federlin K.F., Nephroprotective Effects of Nitrendipine in Hypertensive Type I and Type II Diabetic Patients, Am. J. Kidney Dis., 21, p. 54 (1993);


