Khorsand Movagar, M., Rashidi, F., Goharpey, F., Mirzazadeh, M., Amani, E. (2010). Effect of Elasticity Parameter on Viscoelastic Fluid in Pipe Flow Using Extended Pom-Pom Model. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 29(3), 83-94.

Mohammad Reza Khorsand Movagar; Fariborz Rashidi; Fatemeh Goharpey; Mahmoud Mirzazadeh; Ehsan Amani. "Effect of Elasticity Parameter on Viscoelastic Fluid in Pipe Flow Using Extended Pom-Pom Model". Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 29, 3, 2010, 83-94.

Khorsand Movagar, M., Rashidi, F., Goharpey, F., Mirzazadeh, M., Amani, E. (2010). 'Effect of Elasticity Parameter on Viscoelastic Fluid in Pipe Flow Using Extended Pom-Pom Model', Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 29(3), pp. 83-94.

Khorsand Movagar, M., Rashidi, F., Goharpey, F., Mirzazadeh, M., Amani, E. Effect of Elasticity Parameter on Viscoelastic Fluid in Pipe Flow Using Extended Pom-Pom Model. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 2010; 29(3): 83-94.

Effect of Elasticity Parameter on Viscoelastic Fluid in Pipe Flow Using Extended Pom-Pom Model

^{1}Faculty of Chemical Engineering, Amirkabir University of Technology, Tehran, I.R. IRAN

^{2}Faculty of Polymer Engineering, Amirkabir University of Technology, Tehran, I.R. IRAN

^{3}Faculty of Mechanical Engineering, Amirkabir University of Technology, Tehran, I.R. IRAN

Abstract

In this study prediction of the steady-state flow of branched polymer melts in pipe geometry with finite volume method is presented. Our analysis in this study revealed that;for normal-stress t_{qq} , the XPP model can predict this tensor unlike the other viscoelastic models such as PTT or Gieskus which can not predict t_{qq} for viscoelastic fluid in two dimensional pipe flows. The fluid is modelled using a modification of the Pom-Pom model known as the single eXtended Pom-Pom (XPP) where viscoelastic fluid is typically a commercial low-density polyethylene.In finite volume method, the operator-integration is used to discretize the governing equations in space or control volume. An iterative solution algorithm that decouples the computation of momentum from that of stress is used to solve the discrete equations. Numerical results are presented, including the profiles of all relevant stresses, the axial velocity, stretch and the viscosity across the gap, demonstrating the performance of the model predictions. The influence of elasticity parameter on flow behaviour is studied, which demonstrates in particular, the dependence of velocity and stresses distribution as a function of Weissenberg number is analyzed. Also, the effect of Weissenberg number on pressure gradient has been considered. Finally, verification of the present model was made by comparing to the Generalized Newtonian Fluid (GNF) model.

[1] McLeish T.C.B., Larson R.G., Molecular Constitutive Equations for a Class of Branched Polymers: the Pom-Pom Polymer, J. Rheol., 42, p. 81 (1998).

[2] Doi M., Edwards S.F., "The Theory of Polymer Dynamics",OxfordUniversityPress,Oxford, (1986).

[3] Verbeeten W.M.H., Peters G.W.M., Baaijens F.T.P., Differential Constitutive Equations for Polymer Melts: the Extended Pom-Pom Model, J. Rheol., 45 (4), p. 823 (2001).

[4] Van Os R.G.M., Phillips T.N., Spectral Element Methods for Transient Viscoelastic Flow Problems, J. Comput. Phys.,201, p. 286(2004).

[5] Van Os R.G.M., Phillips T.N., Efficient and Stable Spectral Element Methods for Predicting the Flow of an XPP Fluid Past a Cylinder, J. Non-Newtonian Fluid Mech., 129, p. 143 (2005).

[6] Van Os R.G.M., Phillips T.N., The Prediction of Complex Flows of Polymer Melts Using Spectral Elements, J. Non-Newtonian Fluid Mech., 122, p. 287 (2004).

[7] Blackwell R.J., McLeish T.C.B., Harlen O.G., Molecular Drag-Strain Coupling in Branched Polymer Melts, J. Rheol., 44, p. 121 (2000).

[8] Inkson N.J., Phillips T.N., van Os R.G.M., Numerical Simulation of Flow Past a Cylinder Using Models of XPP Type, J. Non-Newtonian Fluid Mech., 156, p. 7 (2009).

[9] Verbeeten W.M.H., Peters G.W.M., Baaijens F.T.P., Viscoelastic Analysis of Complex Melt Flows Using the Extended Pom-Pom Model, J. Non-Newtonian Fluid Mech., 108, p. 301 (2002).

[10] Phillips T.N., Williams A.J., Viscoelastic Flow Through a Planar Contraction Using a Semi -Lagrangian Finite Volume Method, J. Non Newtonian Fluid Mech.,87, p. 215 (1999).

[11] Aboubacar M., Phillips T.N., Tamaddon-Jahromi H.R., Snigerev B.A., Webster M.F., High-Order Finite Volume Methods for Viscoelastic Flow Problems, J. Comput. Phys.,199, p.16 (2004).

[12] Aboubacar M., Webster M.F., A Cell-Vertex Finite Volume/Element Method on Triangles for Abrupt Contraction Viscoelastic Flows, J.Non-Newtonian Fluid Mech., 98, p. 83 (2001).

[13] Patankar S.V., “Numerical Heat Transfer and Fluid Flow”, McGraw-Hill,New York, (1980).

[14] Waters N.D., King M.J., "Unsteady Flow of an Elastico- Viscous Liquid", Acta Band 9, Heft 3 (1970).

[15] Bishko G.B., Harlen O.G., McLeish T.C.B., Nicholson T.M., Numerical Simulation of the Transient Flow of Branched Polymer Melts Through a Planar Contraction Using the ‘Pom-Pom’ Model, J. Non-Newtonian Fluid Mech., 82, p. 255 (1999).

[16] Byron Bird R., Armstrong R.C., Hassager O, “Dynamics of Polymeric Liquids", 1,John-Wiley,New York, (1987).

[17] Baird D.G., “Polymer Processing: Principles and Design”, Butterworth-Heinemann, (1995).