A Rapid and Eco-friendly Synthesis of 5(6)-Carboxy-Rhodamine 110 Isomers

Document Type : Research Note

Authors

1 College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, CHINA

2 College of Environment and Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi, 710048, CHINA

Abstract

5(6)-Carboxy-rhodamine 110 isomers were rapidly synthesized by condensation of 3-aminophenol and trimellitic anhydride using microwave irradiation as heating method. After esterification of the two isomers, separation and hydrolyzation provided target products,5-carboxy-rhodamine 110 and 6-carboxy-rhodamine 110, in high yields. The results shows microwave irradiation can effectively reduce the reaction time and the demanding of condensed H2SO4.

Keywords

Main Subjects


[1] Leytus S.P., Patterson W.L., Mangel W.F., New class of Sensitive and Selective Fluorogenic Substrates for Serine Proteinases. Amino Acid and Dipeptide Derivatives of Rhodamine, Biochem. J., 215, p. 253 (1983).
[2] Bernal S.D., Lampidis T.J., McIsaac R.M., Chen L.B., Anti-Carcinoma Activity in Vivo of Rhodamine-123, A Mitochondrialspecific Dye, Science, 222, 4620, 169 (1983).
[3] Leytus S.P., Melhado L.L., Mangel W.F., Rhodaminebased Compounds as Fluorogenic Substrates for Serine Proteases, Biochem. J., 209, p. 299 (1983).
[4] Morliere P., Mangel W.F., Santus R., Huppe G., Reyftmann J.P., Kohen E., Interaction of Tetrapyrrolic Rings with Rhodamine 110 and 123 and with Rhodamine 110 Derivatives Bearing a Peptidic Side Chain, Biochem. Biophys. Res. Commun., 146, p. 107 (1987).
[5] Nedelčev T., Račko D., KrupaI., Preparation and Characterization of a New Derivative of Rhodamine B with an Alkoxysilane Moiety, Dyes Pigments, 76, p. 550 (2008).
[6] Gee K.R., Weinberg E.S., Kozlowski D.J., Caged Q-Rhodamine Dextran: A New Photoactivated Fluorescent Tracer, Bioorg. Med. Chem. Lett., 11, p. 2181 (2001).
[7]  Yan F.Y., Chen L.G., Yan X.L., Ge F.Y., Duan E.H., Synthesis and Applications of Rhodamine Fluorescent Dyes, Prog. Chem., 18, p. 252 (2006).
[8]  Cai S.X., Zhang H.Z., Guastella J., Drewe J., Yang W., Weber E., Design and Synthesis of Rhodamine
110 Derivative and Caspase-3 Substrate for Enzyme and Cell-Based Fluorescent Assay, Bioorg. Med. Chem. Lett., 11, p. 39 (2001).
[9]  Hung S.C., Mathies R.A., Glazer A.N., Optimization of Spectroscopic and Electrophoretic Properties of Energy Transfer Primers, Anal. Biochem., 252, p. 78 (1997).
[10] Edmundson A.B., Ely K.R., Herron J.N., A Search for Site-Filling Ligands in the Mcg Bence-Jones Dimer: Crystal Binding Studies of Fluorescent Compounds, Mol. Immunol., 21(7), p. 561 (1984).
[11] Lee L.G., Spurgeon S.L., Heiner C.R., Benson S.C., New Energy Transfer Dyes for DNA Sequencing, Nucl. Acids Res., 25, p. 2816 (1997).
[12] Menchen S.M.,  Fung S., 5- and 6-Succinimidyl-Carboxylate Isomers of Rhodamine Dyes, EP 0272007 (1988).
[13] Corrie  J.E.,  Craik  J.S.,  Synthesis  and Characterization of Pure Isomers of odoacetamidotetramethylrhodamine, J. Chem. Soc. Perkin Trans., 1, p. 2967 (1994).
[14] Gao Y., Tian M., Zhang B., Zhang M., Li J.L., Shi Z., Synthesis, Separation and Characterization of 5(6)-Carboxy-Rhodamine 110 Isomers, Chin. J. Org. Chem., 27(2), p. 269 (2007).
[15] Wei J.F., Shi X.Y., He D.P., Zhang Y., A Rapid Detosylation of N,N',N'', N'''-Tetra(p-Tosyl)-1,4,7,10-Tetraaza-Cyclododecane under Microwave Irradiation and NormalPressure, Chin. J. Org. Chem., 23, 1142 (2003).