Theoretical Study of Heteroatom Resonance-Assisted Hydrogen Bond: Effect of Substituent on π-delocalization

Document Type: Research Article


Chemistry Department, Faculty of Sciences, Shiraz University, Shiraz, I.R. IRAN


The concept of Resonance Assisted Hydrogen Bond (RAHB), which usually occurs in b diketons, has a remarkable role in chemistry. These molecules, which contain heteroatom particularly O and N, are species with biological interest in protein folding and DNA pairing. Therefore, the amplification of hydrogen bonds strength by substituents may be important in life sciences. In the current research, we have shown that the nature of hydrogen bond in the enol form of heteroatom RAHB systems has partial covalent and electrostatic character. Nonetheless, the strength of hydrogen bonds increases by means of three different groups of substituents, which cannot be attributed to the contributions of resonance structures. Parameters such as bond ellipticity, p delocalization indices and bond equalizations cannot help to prove the effect of conjugation on the strength of hydrogen bond in RAHB systems. It is shown by NBO that the primary and secondary hyperconjugative charge transfer caused by substituents help to amplify this type of hydrogen bond. We showed that the existence of p-conjugation is necessary only for transformation of electron from substituents to the hydrogen bond as an acceptor of electrons.The strength of RAHB has a rather good correlation with the distance between of two non-connected heteroatoms O and N according to reference [62].


Main Subjects

[1] Huggins M.L.,“Thesis in Advanced Inorganic Chemistry course”, University of California(1919). 

[2] Latimer W.M., Rodebush W.H., Polarity and Ionization from the Standpoint of the Lewis Theory of Valence , J. Am. Chem. Soc., 42, p. 1419 (1920).

[3] Lewis G.N., Valance and the Structure of Atoms and Molecules”,New York, The Chemical Catalog Company (1923).

[4] Pimentel G.C., McClellan A.L., “The Hydrogen Bond”, Freeman, SonFrancisco,GA(1960).

[5] HamiltonW.C., Ibers, J.A., “Hydrogen Bonding in Solids”,Benjamin,New York, (1968).

[6] Schuster P., Zundel G., Sandorfy C., (Eds). “The Hydrogen Bond, Recent Developments in Theory and Experiments”, Vol I, II and III,: North-Holland Publication Company,Amsterdam(1976).

[7] Jeffrey G.A., Saenger W., “Hydrogen Bonding in Biological Structures”, Springer,Berlin: (1991).

[8] Jeffrey G.A., “An Introduction to Hydrogen bonding”, Oxford University Press,New York(1997).

[9] Desiraju G.R., Steiner T., “The Weak Hydrogen Bond in Structural Chemistry and Biology”,New York, Oxforduniversity Press (1999).

[10] Pimentel G.C., McClellan A.L., Hydrogen Bonding, Annu, Rev. Phys. Chem., 22, p. 347 (1971).

[11] Kollman P.A., Allen L.C., The Theory of the Hydrogen Groups, Chem. Rev., 72, p. 283 (1972).

[12] Pakiari A.H., Eskandari K., The Chemical Nature of Very Strong Hydrogen Bonds in Some Categories of Compounds, J. Mol. Struct. (Theochem), 759,p. 51 (2006).

[13] Wojulewski S., Grobowski S.J, Unconventional F-Hπ Hydrogen Bonds - Ab Initio and AIM Study, J. Mol. Struct., 605, p.235 (2002).

[14] Lehn J.M., Perspectives in Supramolecular Chemistry-From Molecular Recognition Towards Molecular Information Processing and Self-Organization’, Angew. Chem. Int. Ed. Eng., 29, p. 1304 (1990).  

[15] Lehn J.M., “Supermolecular Chemistry Concepts and Perspectives”, Verlag-Chemie:Wein-heim, Germany{1995).

[16] Teda F., Molecular Recognition, Biorg. Chem., 19, p. 157 (1991).

[17] Rebek R. Jr., Model Studies in Molecular Recognition, Science., 235, p.1478(1987).

[18] Gerh J.A, Kreevoy M.M., Cleland W.W., Frey P.A., Understanding Enzymic Catalysis: The Importance of Short, Strong Hydrogen Bonds, Chem. Biol , 4, p. 259 (1997) .

[19] Perrin C.L., Nielson G.B., Strong Hydrogen Bonds in Chemistry and Biology, Annu. Rev. Phys. Chem., 48, p. 511 (1997).

[20] Cleland W.W., Kreevoy M. .,Low-BarrierHydrogenBonds andEnzymicCatalysis, Science, 264, p. 1887 (1994).

[21] Frey P.A., Whitt S.A., Tobin J.B., A Low-Barrier Hydrogen Bond in the Catalytic Triad of Serine Proteases, Science, 264, p.1927 (1994).

[22] Warshel A., Papazyan A., Kollman P.A., On Low-Barrier Hydrogen Bonds and Enzyme Catalysis, Science, 269, p. 102 (1995).

[23] Vishveshwara S., Madhusudhan M.S., Maizel J.V.Jr., Short-Strong Hydrogen Bonds and a Low Barrier TransitionStatefor the Proton Transfer Reaction in RNase A Catalysis: a Quantum Chemical Study, Biophys. Chem., 89, p. 105 (2001).

[24] Gilli G., Bellucci F., Ferretti V., Bertolasi V., Evidence for Resonance-Assisted Hydrogen Bonding from Crystal-Structure Correlations on the Enol Form of the β-Diketone Fragment, J. Am. Chem. Soc., 111, p. 1023(1989).

[25] Gilli G.,  Bertolasi V.,  Ferretti V.,  Gilli P., Resonance-Assisted Hydrogen Bonding. III. Formation of Intermolecular Hydrogen-Bonded Chains in Crystals of β-Diketone Enols and Its Relevance to Molecular Association, Acta Crystalloger B., 49, p. 564 (1994).

[26] Bertolasi V., Gilli P., Ferretti V., Gilli G., Evidence for Resonance-Assisted Hydrogen Bonding. 2. Intercorrelation between Crystal Structure and Spectroscopic Parameters in Eight Intramolecularly Hydrogen Bonded 1,3-Diaryl- 1,3-propanedione Enols,  J. Am. Chem. Soc., 113, p. 4971 (1991).

[27] Gilli P., Bertolasi V., Ferreti V., Gilli G., Covalent Nature of the Strong Homonuclear Hydrogen Bond. Study of the O-H---O System by Crystal Structure Correlation Methods, J. Am. Chem. Soc, 116, p. 909 (1994).

[28] Gilli G., Gilli P., Towards an Unified Hydrogen-Bond Theory, J. Mol. Struct., 552, p. 1(2000).

[29] Gilli P., Bertolasi V., Ferretti V., Gilli G., Evidence for Intramolecular N-H…O Resonance-Assisted Hydrogen Bonding in β-Enaminones and Related Heterodienes. A Combined Crystal-Structural, IR and NMR Spectroscopic and Quantum-Mechanical Investigation, J. Am. Chem. Soc., 122, p. 10405 (2000).

[30] Gilli P., Bertolasi V., Pretto L., lyčka A., Gilli G., The Nature of Solid-State N-H---O/O-H---N Tautomeric Competition in Resonant Systems. Intramolecular Proton Transfer in Low-Barrier Hydrogen Bonds. A Variable-Temperature X-ray Crystallographic and DFT Computational, J. Am. Chem. Soc., 124, p. 13554 (2002).

[31] Gilli P., Bertolasi V., Pretto L., Ferretti V., Gilli G., Covalent versus Electrostatic Nature of the Strong Hydrogen Bond: Discrimination among Single, Double, and Asymmetric Single-Well Hydrogen Bonds by Variable-Temperature X-ray Crystallographic Methods in β-Diketone Enol RAHB Systems, J. Am. Chem. Soc., 126, p. 3845 (2004).

[32] Gilli P., Bertolasi V., Ferretti L., Antonov L., Gilli G., Variable Temperature X-ray Crystallographic and DFT Computational Study of the N-H---O/N---H-O Tautomeric Competition in 1-(Arylazo)-2-naphthols, J. Am. Chem. Soc. 127 p. 4943 (2005).

[33] Viloca M.G., Lafont A.G., Lluch J.M., Theoretical Study of the Low-Barrier Hydrogen Bond in the Hydrogen Maleate Anion in the Gas Phase. Comparison with Normal Hydrogen Bonds, J. Am. Chem. Soc., 119 , p. 1081 (1997).

[34] Viloca M.G., Lafont A.G.,  Lluch J.M., Asymmetry of the Hydrogen Bond of Hydrogen Phthalate Anion in Solution. A QM/MM Study, J. Am. Chem. Soc., 121, p. 9198 (1999).

[35] Wojtulewski S., Grobowski J.J., DFT and AIM Studies on Two-Ring Resonance Assisted Hydrogen Bonds, J. Mol. Struct.(Theochem), 621, p. 285 (2003).

[36] Mohajeri A., Theoretical Evidences for Resonance-Assisted Hydrogen Bonding, J. Mol. Struct. (Theochem), 678, p. 201 (2004).

[37] Madsen G.K.H., Iversen B.B., Larsen F.K., Kapon M., Reisner G.M., Hrbstein F.H., Topological Analysis of the Charge Density in Short Intramolecular O−H···O Hydrogen Bonds. Very Low Temperature X-ray and Neutron Diffraction Study of Benzoylacetone, J. Am. Chem. Soc., 120, p. 10040 (1998).

[38] Schiǿtt B., Iversen B.B., Madsen G.K.H,  Bruice T.C., Characterization of the Short Strong Hydrogen Bond in Benzoylacetone by ab Initio Calculations and Accurate Diffraction Experiments. Implications for the Electronic Nature of Low-Barrier Hydrogen Bonds in Enzymatic Reactions,  J. Am. Chem. Soc., 120, p. 12117 (1998).

[39] Sobczyk L., Grabowski S.J., Krygowski T.M.,Interrelation between H-Bond and Pi-Electron Delocalization, Chem. Rev., 105, p. 3513(2005).

[40] AlkortaI., Elguero J., Mo O., Ya´n˜ez b M., Del Bene G.E., Are Resonance-Assisted Hydrogen Bonds ‘Resonance Assisted’? A Theoretical NMR Study, Chem. Phys. Lett., 411, p. 411 (2005).

[41] Frisch M.J., Pople J.A., Gaussian 03, Revision B.04; Gaussian, Inc.,Pittsburgh PA(2003).

[42] Becke, A.D., Density-Functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys., 98, p. 5648 (1993).

[43] Lee C., Yang W., Parr R.G., Development of the Colle-Salvetti Correlation-energy Formula into a Functional of the Electron Density, Phys. Rev. B, 37, p. 785 (1988).

[44] Bader R.F.W., “Atoms in Molecules: a Quantum Theory”,OxfordUniversityPress,Oxford,UK(1990).

[45] Biegler-König F., Schönbohm J., AIM2000 2.0 Copyright (2002).

[46] Bader R.F.W., A Bond Path: A Universal Indicator of Bonded Interactions, J. Phys. Chem. A, 102, p. 7314 (1998).

[47] Cremer D., Kraka E., Chemical Bonds without Bonding Electron Density-Does the Difference Electron Density Analysis Suffice for a Description of the Chemical Bond? , Angew. Chem.,23, p. 627(1984).

[48] Goodman L., Pophristic V., Weinhold F., Origin of Methyl Internal Rotation Barriers Account. Chem. Research,32, p. 983(1999).

[49] Weinhold F., Chemical Bonding as a Superposition. Phenomenon, J. Chem. Edu., 76, p. 1141(1999).

[50] Weinhold F., Landis C., “Valancy and Bonding”,CambridgeU ( 2005).

[51] Glendening E.D., Reed A.E., Carpenter J.E., Weinhold F., NBO Version 3.1.

[52] Foster P, Weinhold F., Natural Hybrid Orbitals, J. Am. Chem. Soc., 102, p.7211 (1980).

[53] Reed A.E., Curtiss L.A., Weinhold F.,Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint, Chem. Rev., 88, p. 899 (1988).

[54] Weinhold F., “Natural Bond Orbital Methods” P.v.R. Schleyer, Editor, Encyclopedia Comput. Chem., p. 1793 Wiley,Chichester,UK, (1998).

[55] Desiraju G.R., “Crystal Engineering, The Design of Organic Solids”, Elsevier, Amesterdam, The Netherlands(1989).

[56] Berolasi V., Gilli P., Ferretti V., Gilli G., Vaughan, K., Interplay Between Steric and Electronic Factors in Determining the Strength of Intramolecular Resonance-Assisted N-H···O Hydrogen Bond in a Series of β-Ketoarylhydrazones, New. J. Chem., 23, p. 1261(1999).

[57] Biaz C.R., Dunietz B.D., Theoretical Studies of Conjugation Effects on Excited State Intramolecular Hydrogen-Atom Transfer Reactions in Model Systems J. Phys. Chem. A , 111, p. 10139  (2007) .

[58] Espinosa E., Molins E., Lecomte C., Hydrogen bond Strength Revealed by Topological Analyses of Experimentally Observed Electron Densities, Chem. Phys. Lett., 285, p.170  (1998).

[59] Espinosa E., Molins E., Theoretical Studies of Conjugation Effects on Excited State Intramolecular Hydrogen-Atom Transfer Reactions in Model Systems, J. Chem. Phys., 113, p. 5686 (2000).

[60] Jenkins, S., Morrison, I., The Chemical Character of the Intermolecular Bonds of Seven Phases of Ice as Revealed by ab Initio Calculation of Electron Densities, Chem. Phys. Lett., 317, p. 97(2000).

[61] Popelier P., “Atoms in molecules, an Introduction”, Prentice-Hall, Pearson Education Limited (2000).

[62] Pakiari A.H., Eskandari E., Closed Shell Oxygen-Oxygen Bonding Interaction Based on Electron Density Analysis, J. Mol. Struct. (Theochem), 806, p.1 (2007).