CFD Study on Hydrogen-Air Premixed Combustion in a Micro Scale Chamber

Document Type: Research Article

Authors

1 CFD Research Center, Chemical Engineering Department, Razi University, Kermanshah, I.R. IRAN

2 Faculty of Mechanical Engineering, College of Engineering and Petroleum, Kuwait University, KUWAIT

Abstract

This paper reports a CFD modeling study to investigate the hydrogen-air mixture combustion in a micro scale chamber. Nine species with nineteen reversible reactions were considered in the premixed combustion model. The effect of operational and geometrical conditions including; combustor size, wall conductivity, reactant flow rates and hydrogen feed splitting on combustion stability and outlet gas temperature were investigated. The results show that the wall thermal conductivity has a significant effect on the combustion especially at smaller chamber size with high ratio of chamber surface area to its volume. In addition, the results reveal that high heat loss from chamber wall, small chamber and high input rate may cause flame quenching. Moreover, the modeling results indicate that a stable combustion in a micro combustor can be achieved at an optimum operational condition.  

Keywords

Main Subjects


[1] Norton D.G., Vlachos D.G., Combustion Characteristics and Flame Stability at the Microscale: a CFD Study of Premixed Methane-Air Mixtures, Chem. Eng. Sci., 58, p. 4871 (2003).

[2] Norton D.G., Vlachos D.G., A CFD Study of Propane-Air Microflame Stability, Combust. Flame., 138, p. 97 (2004).

[3] Yang W.M., Chou S.K., Shu C., Li Z.W., Xue H., Combustion in Micro Cylindrical Combustors with and Without a Backward Facing step, Appl. Therm. Eng., 22, p. 1777 (2002).

[4] Karagiannidis S., Mantzaras J., Jackson G., Boulouchos K., Hetero-homogeneous Combustion and Stability Maps in Methane-Fueled Catalytic Micro Reactors, Proc. Combust. Inst., 31, p. 3309 (2007).

[5] Li J., Chou S.K., Huang G., Yang W.M., Li Z.W., Study on Premixed Combustion in Cylindrical
Micro Combustors: Transient Flame Behavior and Wall Heat Flux, Exp. Therm. Fluid. Sci., 33, p. 764 (2009).

[6] Li J., Chou S.K., Li Z.W., Yang W.M., Experimental Investigation of Porous Media Combustion in
a Planar Micro Combustor, Fuel, 89, p. 708 (2010).

[7] Cao H.L., Xu J.L., Thermal Performance of a Micro Combustor for Micro Gas Turbine System, Energy Conv. Manag., 48, 1569 (2007).

[8] Wenming Y., Siawkiang Ch., Chang Sh., Hong X., Zhiwang L., Effect of Wall Thickness of Micro Combustor on the Performance of Micro-Thermophotovoltaic Power Generators, Sensor. Actuator. , 119, p. 441 (2005).

[9] Miesse C., Masel R., Short M., Shannon M., Experimental Observations of Methane-Oxygen Diffusion Flame Structure in a Sub-Millimeter Microburner, Combust. Theory Model., 9, p.77 (2005).

[10] Junwei L., BeijingZ., Experimental Investigation on Heat Loss and Combustion in Methane-Oxygen Micro Tube Combustor, Appl. Therm. Eng., 28, p. 707 (2008).

[11] Choi H.S., Park T.S., Suzuki K., Turbulent Mixing of a Passive Scalar in Confined Multiple Jet Flows of a Micro Combustor, Int. J. Heat Mass Transfer, 51, p. 4276 (2008).

[12] Zhou J., Wang Y., Yang W., Liu J., Wang Z., Cen K., Improvement of Micro Combustion Stability Through Electrical Heating, Appl. Therm. Eng., 29, p. 2373 (2009).

[13] Kim K.B., Kwon O.C., Studies on a Two-Staged Micro Combustor for a Micro Reformer Integrated with a Micro Evaporator, J. Power Sourc., 182, p. 609 (2008).

[14] Raimondeau S., Norton D., Vlachos D.G., MaselR.I., Modeling of High Temperature Micro Burners, Proc. Combust. Inst., 29, p. 901 (2002).

[15] Leach T.T., Cadou C.P., JacksonG.S., Effects of Structure Conduction and Heat Loss on Combustion in Micro Channels, Combust. Theory Model., 10, p. 85 (2006).

[16] Jejurkar S.Y., Mishra D.P., Numerical Characterization of a Premixed Flame Based Annular Micro Combustor, Int. J. hydrogen energy, 35, p. 9755 (2010).

[17] Zhou J., Wang Y., Yang W., Liu J., Wang Z., Cen K., Combustion of Hydrogen-Air in Catalytic Micro Combustors Made of Different Material, Int. J. hydrogen energy, 34, p. 3535 (2009).

[18] Kaisare N.S., Vlachos D.G., Optimal Reactor Dimensions for Homogeneous Combustion in Small Channels, Catal. Today, 120, p. 96 (2007).

[19] Li J., Chou S. K., Li Z., Yang W., Development of 1D Model for the Analysis of Heat Transport in Cylindrical Micro Combustors , Appl. Therm. Eng., 29, p. 1854 (2009).

[20] Li Z.W., Chou S.K., Shu C., Yang W.M., Predicting the Temperature of a Premixed Flame in a Micro Combustor, J. Appl. Physic., 96, p. 3524 (2004).

[21] Li Z.W., Chou S.K., Shu C., Yang W.M., Entropy Generation During Micro Combustion, J. Appl. Physic., 97, p. 84914 (2005).

[22] Chen G., Chen C., Wu C., Chao Y., Effects of Catalytic Walls on Hydrogen-Air Combustion Inside a Micro Tube, Appl. Catal., 332, p. 89 (2007).

[23] Leach T.T., Cadou C.P., The Role of Structural Heat Exchange and Heat Loss in the Design of Efficient Silicon Micro Combustors, Proc. Combust. Inst., 30, p. 2437 (2005).

[24] Benedetto A.D., Sarli V.D., Russo G., A Novel Catalytic-Homogenous Micro Combustor, Catal. Today, 147S, p. S156 (2009).

[25] Benedetto A.D., Sarli V.D., Russo G., Effect of Geometry on the Thermal Behavior of Catalytic Micro Combustors, Catal. Today, 155, p. 116 (2010).

[26] Maruta K., Takeda K., Ahn J., Borer K., Sitzki L., Ronney P.D., Deutschmann O., Extinction Limits of Catalytic Combustion in Micro Channels, Proc. Combust. Inst. 29, p. 957 (2002).

[27] Norton D.G., Wetzel E.D., Vlachos D.G., Thermal Management in Catalytic Micro-Reactors, Ind. Eng. Chem. Res., 45, p. 76 (2006).

[28] Hua J., Wu M., Kumar K., Numerical Simulation of the Combustion of Hydrogen-Air Mixture in
Micro-Scaled Chambers. Part I: Fundamental Study, Chem. Eng. Sci., 60, p. 3497 (2005).

[29] Shi L., Bayless D.J., Prudich M., A Model of Steam Reforming of Iso-Octane: The Effect of Thermal Boundary Conditions on Hydrogen Production and Reactor Temperature, Int. J. hydrogen energy, 33, p. 4577 (2008).

[30] Fluent 6.2®: Fluent Inc.,Lebanon,NH,USA, (2005).

[31] Andrae J.C.G., Bjornbom P.H., Wall Effects of Laminar Hydrogen Flames Over Platinum and Inert Surfaces, American Inst. Chem. Eng. J., 46, p. 1454 (2000).

[32] Giovangigli V., Smooke M.D., Extinction of Strained Premixed Laminar Flames with Complex Chemistry, Combust. Sci. Tech., 53, p. 23 (1987).

[33] Glassman I., Yetter R. A., "Combustion", 4th Ed, Chap 1, p. 30, Academic Press, California, (2008).

[34] Li J., Chou S.K., Yang W.M., Li Z.W., A Numerical Study on Premixed Micro Combustion of CH4-Air Mixture: Effects of Combustor Size, Geometry and Boundary Conditions on Flame Temperature, Chem. Eng. J., 150, p. 213 (2009).

[35] Li J., Chou S. K., Li Z. W., Yang W. M., A Comparative Study of H2-Air Premixed Flame in Micro Combustors with Different Physical and Boundary Conditions, Combust. Theory Model., 12, p. 325 (2008).

[36] Barrio V.L., Schaub G., Rohde M., Rabe S., Vogel F., Cambra J.F., Arias P.L., Güemez M.B., Reactor Modeling to Simulate Catalytic Partial Oxidation and Steam Reforming of Methane. Comparison of Temperature Profiles and Strategies for Hot Spot Minimization, Int. J. Hydrogen Energy, 32, p. 1421 (2007).