Preparation and Characterization of Microfiltration Membrane Embedded with Silver Nano-Particles

Document Type : Research Article

Authors

1 Membrane Research Center, Department of Chemical Engineering, Razi University, Kermanshah, I.R. IRAN

2 Department of Chemistry, Tarbiat Moalem University, Tehran, I.R. IRAN

Abstract

The microfiltration 0.2 µm Cellulose Acetate (CA) membrane was modified by embedding antibacterial silver nano-particles in the membrane pores. This novel technique was developed to enhance the capability of the microfiltration membrane for removing microorganism including bacteria. The prepared membrane was characterized using Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), water contact angle measurement and Differential Scanning Calorimetry (DSC). Membrane performance was elucidated by flux and rejection measurements using water samples from the pond of a public recreational park in Tehran. For rejection capability of the membrane, the availability of filament and c-shaped species of the phyla Actinobacteria and Spirochetas in the permeate side of the membrane was estimated.  Contrary to virgin membrane, the modified membrane was able to remove 100% of Actinobacteria and Spirochetasspecies from the infected water. Moreover, the wettability of the modified membrane was remarkably changed leading to higher water flux. A potential application of the modified Ag-CA membrane is “sterile filtration” of temperature sensitive fluids.

Keywords

Main Subjects


[1] Hahn M.W., Broad Diversity of Viable Bacteria in ‘Sterile’ (0.2 μm) Filtered Water, Res. Microbiol., 155, p. 688 (2004).
[2] Hahn M.W., Stadler P., Wu Q.L., Pockl M., The Filtration Acclimatization Method for Isolation of an Important Fraction of not Readily Cultivable Bacteria, J. Microbiol. Meth., 57, p. 379 (2004)
[3] Breznak J.A., Canale-Parola E., Morphology and Physiology of Spirochaeta Aurantia Strains Isolated from Aquatic Habitats, Arch. Microbiol, 105, p. 1 (1975).
[4] Braun J.L., Diesch S.L., McCulloch W.F., A Method for Isolating Leptospires from Natural Surface Waters, Can. J. Microbiol., 14, p. 1011 (1968).
[5] Hahn M.W., Lunsdorf H., Wu Q., Schauer M., Hofle M.G., Boenigk J. and Stadler P., Isolation of Novel Ultramicrobacteria Classified as Actinobacteria from Five Freshwater Habitats in Europe and Asia, App. Environ. Microbiol., 69, p. 1442 (2003).
[6] Hahn M.W., Isolation of Strains Belonging to the Cosmopolitan Polynucleobacter Necessarius Cluster from Freshwater Habitats Located in Three Climatic Zones, App. Environ. Microbiol., 69, p. 5248 (2003).
[7] Canale-Parola E., Rosenthal S.L., Kupfer D.G., Morphological and Physiological Characteristics of Spirillum Gracile, J. Antonie van Leeuwenhoek, 32, p. 113 (1966).
[8] Gerhardt H., Murray R.G.E., Wood W.A., Krieg N.R., “Methods for General and Molecular Bcteriology”, American Society for Microbiology,Washington,DC, (1994).
[9] SondiI., Salopek-Sondi B., Silver Nanoparticles as Antimicrobial Agent: a Case Study on E. Coli as a Model for Gram-Negative Bacteria, J. Colloid. Interf. Sci., 275, p. 177 (2004).
[10] Duran N., Marcato P.D., De Souza G.I.H., Alves O.L., Esposito E., Antibacterial Effect of Silver Nanoparticles Produced by Fungal Process on Textile Fabrics and Their Effluent Treatment, J. Biom. Nanotechno., 3, p. 203 (2007).
[11] Elechiguerra J.L., Burt J.L., Morones J.R, Camacho-Bragado A., Gao X., Lara H.H., Yacaman M.J., Interaction of Silver Nanoparticles wit HIV-1, J. Colloid. Interf. Sci.,275, p. 177 (2004).
[12] Hulteen J.C., Martin C.M., A general Template-Based Method for the Preparation of Nano-Materials, J. Mater. Chem., 7, p. 1075 (1997).
[13] Wirtz M., Parker M., Kobayashi Y., Martin C.R., Template Synthesized Nano-Tubes for Chemical Separations and Analysis, J. Chem.- A Europ. J., 8, p. 3572 (2002).
[14] Martin C.M., Nishizawa M., Jirage K., Kang M., Investigation of the Transport Properties of Gold Nano-Tubule Membranes, J. Phys. Chem., 105, p. 1925 (2001).
[15] Hulteen J.C., Jirage K.B. and Martin C.R., Introducing Chemical Transport Selectivity Into Gold Nanotubule Membranes, J. Am. Chem. Soc., 120, p. 6603 (1998).
[16] Foss C.A., Hornyak G.L., Stockert J.A., Martin C.R., Optical Properties of Composite Membranes Containing Arrays of Nanoscopic Gold Cylinders, J. Phys. Chem. 96, p. 7497 (1992).
[17] Zhanga H., Quan X., Chena S., Zhao H., Zhao Y., The Removal of Sodium Dodecylbenzene Sulfonate Surfactant from Water Using Silica/Titania Nanorods/ Nanotubes Composite Membrane with Photocatalytic Capability, J. Alloy. Compd., 426, p. 281 (2006).
[18] Cong H., Zhang J., Radosz M., Shen Y., Carbon Nanotube Composite Membranes of Brominated Poly(2,6-Diphenyl-1,4-Phenylene Oxide) for Gas Separation, J. Membr. Sci. 294, p. 178 (2007).
[19] Lv Y., Liu H., Wang Z., Liu S., Hao L., Sang Y., Liu D., Wang J., Boughton R.I., Silver Nanoparticle-Decorated Porous Ceramic Composite for Water Treatment, J. Membr. Sci., 331, p. 50 (2009).
[20] Ku J.-R., Vidu R., Talroze R. and Stroeve P., Fabrication of Nanocables by Electrochemical Deposition Inside Metal Nanotubes, J. Am. Chem. Soc., 126, p. 15022 (2004).
[21] Che G., Lakshmi B.B., Martin C.R., Fisher E.R., Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method, Chem. Mater. 8, p. 1739 (1996).
[22] Yang S.M., Chen K.H., Yang Y.F., Synthesis of Polyaniline Nanotubes in the Channels of Anodic Alumina Membrane, Synthetic Meter., 152, p. 65 (2005).
[23] Hornyak G.L., Template Synthesis of Carbon Nanotubes, "Forth International Conference on Nanostructured Materials", Gdansk, Poland, (2007).
[24] Choi Y.C., Kim J. and BuS.D., Template-Directed Formation of Functional Complex Metal-Oxide Nanostructures by Combination of Sol-Gel Processing and Spin Coating, Mater. Sci. Eng., 133, p. 245 (2006).
[25] Wang W., Li N., Li X., Geng W. and Qiu S., Synthesis of Metallic Nanotube Arrays in Porous Anodic Aluminum Oxide Template Through Electroless Deposition, Mater. Res. Bull., 41, p. 1417 (2006).
[26] Zhu W., Wang W., Xu H. and Shi J., Fabrication of Ordered SnO2 Nanotube Arrays Via a Template Route, Mater. Chem. Phys., 99, p. 127 (2006).
[27] Zhai T., Gua Z., Maa Y., Yang W., Zhaoa L., YaoJ., Synthesis of Ordered ZnS Nanotubes by MOCVD-Template Method, Mater. Chem. Phys., 100, p. 281 (2006).
[28] Zhang Z.-L., Wu Q.-S., Ding Y.-P., Inducing Synthesis of CdS Nanotubes by PTFE Template, Inorg. Chem. Commun., 6, 1p. 393 (2003).