Removal of BTX Compounds from Wastewaters Using Template Free MFI Zeolitic Membrane

Document Type: Research Article


1 Faculty of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, I.R. IRAN

2 Department of Chemical and Biochemical Engineering, Faculty of Engineering, University of Western Ontario (UWO), London, Ontario, CANADA


MFI zeolite membranes were prepared on porous α-alumina substrates, using secondary growth of nano-seeded layers. The resulting membranes were characterized by means of Scanning Electron Microscopy (SEM), X-Ray Diffractometry (XRD), and pervaporation performance tests for separation of Benzene, Toluene and Xylene (BTX) mixture from contaminated water. The morphology, thickness, homogeneity, crystal preferential orientation and permeation properties of these membranes have been studied in relation to the seed layers. Successful separation of BTX mixture from water was performed by using the manufactured MFI zeolite membrane. The influence of temperature, feed concentration on the membrane separation efficiency systematically investigated. The total permeation fluxes were found to increase with increase in temperature and feed concentration. The separation factors increased with increasing feed concentration and decreased with increasing in temperature.


Main Subjects

[1] Peng M., Vane L.M., Liu X., Recent Advances in VOCs Removal from Water by Pervaporation, J. Hazard. Mater., B98, p. 69 (2003).

[2] Konieczny K., Bodzek M., Panek D., Removal of Volatile Compounds from the Wastewaters by Use of  Pervaporation, Desalination, 223, p. 344 (2008).

[3] Panek D., Konieczny K., Preparation and Applying the Membranes with Carbon Black to Pervaporation of Toluene from the Diluted Aqueous Solutions, Sep. Purif. Technol., 57(3), p. 507 (2007).

[4] Hitchens L., Vane L.M., Alvarez F.R.,VOC Removal from Water and Surfactant Solutions by Pervaporation: a Pilot Study, Sep. Purif. Technol., 24(1-2), p. 67 (2001).

[5] Jeng-Dung Jou, Yoshida W., Cohen Y., A Novel Ceramic-Supported Polymer Membrane for Pervaporation of Dilute Volatile Organic Compounds, J. Mem. Sci., 162(1-2), p. 269 (1999).

[6] Baker. R.W., “Membrane Technology and Applications”, John Wiley Publication,New York.,USA(2004).

[7] Lin Y.Y.S., Kumakiri I., Nair B.N., Alsyouri. H., Microporous Inorganic Membranes, Sep. Purif. Methods, 31, p. 229 (2002).

[8] Caro J., Noack M., Kölsch P., Schäfer R., Zeolite Membranes-State of Their Development and Perspective, Microporous Mesoporous Mater., 38(1), p. 3 (2000).

[9] Aguado S., Polo A.C., Bernal M.P., Coronas J., Santamaría J., Removal of Pollutants from Indoor
Air Using Zeolite Membranes, J. Mem. Sci., 240(1-2), p. 159 (2004).

[10] Chandak M.V., Lin Y.S., Ji W., Higgins R.J., Sorption and Diffusion of VOCs in DAY Zeolite and Silicalite-Filled PDMS Membranes, J. Mem. Sci., 133(2), p. 231 (1997).

[11] Tsapatsis M., Heng S., Lau P.P.S., Yeung K., Djafer M., Schrott J., Low-Temperature Ozone Treatment for Organic Template Removal from Zeolite Membrane, J. Membr. Sci., 243, p. 69 (2004).

[12] Gopalakrishnan S., Yamaguchi T., Nakao. S., Permeation Properties of Templated and Template-Free ZSM-5 Membranes, J. Membr. Sci., 274, p. 102 (2006).

[13] Hedlund J., Jareman F., Bons A., Anthonis M., A Masking Technique for High Quality MFI Membranes, J. Membr. Sci., 222(1-2), p. 163 (2003).

[14] Pan M., Lin Y.S., Template-Free Secondary Growth Synthesis of MFI Type Zeolite Membrane, Microporous Mesoporous Mater., 43(3), p. 319 (2001).

[15] Cheng Y., Liao R.H., Li J.S., Sun X.Y., Wang L.J., Synthesis Research of Nanosized ZSM-5 Zeolites in the Absence of Organic Template, J. Mater. Process. Technol., 206, p. 445 (2008).

[16] Lai Re, Gavalas G.R., ZSM-5 Membrane Synthesis with Organic-Free Mixtures, Microporous Mesoporous Mater., 38(1-2), p. 239 (2000).

[17] Zhong Tang, Seok-Jhin Kim, Xuehong Gu, Junhang Dong, Microwave Synthesis of MFI-type Zeolite Membranes by Seeded Secondary Growth without the Use of Organic Structure Directing Agents, Microporous Mesoporous Mater., 118(1-3), p. 224 (2009).

[18] Nikpey A., Kazemian H., Sadeghi M., Remediation of MTBE Contaminated Water by Using Insitu Catalytic and Biological Combined Techniqes, J. of Environmental Sciences, 4(6), 717-722 (2008).

[19] Ghadiri S.K., Nabizade R., Mahvi A.H., Nasseri S., Kazemian H., Mesdaghinia A.R., Nazmara Sh., Methyl Tert Butyl Ether Adsorption on Surfactant Modified Natural Zeolites, J. Environ. Health Sci. Eng., 7(3), p. 235 (2010).

[20] Torabian A., Kazemian H., Seifi L., Bidhendi G.N., Ghadiri S.K., Removal of Petroleum Aromatic Hydrocarbons by Surfactant-Modified Natural Zeolite, Clean-Soil, Air, Water, 38 (1), p. 77 (2010).

[21] Seifi L., Torabian A., Kazemian, H. Nabi Bidhendi G., Azimi A.A., Charkhi A., Adsorption of Petroleum Monoaromatics from Aqueous Solutions Using Granulated Surface Modified Natural Nanozeolites: Systematic Study of Equilibrium Isotherms, Water, Air, & Soil Pollution, 217(1-4), p. 611 (2011).

[22] Seifi L., Torabian A., Kazemian H., Bidhendi G.N., Azimi A.A., Farhadi F., Nazmara S., Kinetic Study of BTEX Removal Using Granulated Surfactant-Modified Natural Zeolites Nanoparticles, Water, Air, Soil Pollution, DOI: 10.1007/s11270-010-0719-z,  Article in Press (2011).

[23] Seifi L., Torabian, A. Kazemian H., Bidhendi G.N., Azimi A.A., Nazmara S., AliMohammadi M., Adsorption of BTEX on Surfactant Modified Granulated Natural Zeolite Nanoparticles: Parameters Optimizing by Applying Taguchi Experimental Design Method, Clean-Soil, Air, Water, In press (2011).

[24] Li Q., Wang Zh., Hedlund J., Creaser D., Zhang H., Zou X., Bons. A., Synthesis and Characterization of Colloidal Zoned MFI Crystals, Microporous Mesoporous Mater., 78, p. 1 (2005).

[25] Vu A. Tuan, Shiguang Li, John L. Falconer, Richard D. Noble., Separating Organics from Water by Pervaporation with Isomorphously-Substituted MFI Zeolite Membranes, J. Mem. Sci., 196, p. 111 (2002).