Comparison of Different Loop Bioreactors Based on Hydrodynamic Characteristics, Mass Transfer, Energy Consumption and Biomass Production from Natural Gas

Document Type : Research Article

Authors

1 Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University P.O. Box 14115-143 Tehran, I.R. IRAN

2 School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, I.R. IRAN

Abstract

The performance of a forced-liquid Vertical Tubular Loop Bioreactor (VTLB), a forced-liquid Horizontal Tubular Loop Bioreactor (HTLB) and a gas-induced External Airlift Loop Bioreactor (EALB) were compared for production of biomass from natural gas. Hydrodynamic characteristics and mass transfer coefficients were determined as functions of design parameters, physical properties of gases as well as operational parameters. Moreover, energy consumption for different gas and liquid flow rates was studied. In the EALB, kinematic viscosity (υg) showed its significant role on mixing time, gas hold-up and kLa and the diffusion coefficient of gas in water (Dg) had a remarkable effect on kLa. It was observed from experimental results that the performance of the VTLB was the best for biomass production. Furthermore, the volumetric mass transfer coefficients for air and methane were determined at different geometrical and operational factors. New correlations for mixing time, gas hold-up and kLa were obtained and expressed separately. Also, the different ratios of methane and air were measured and compared for optimum growth in the VTLB, HTLB and EALB.  

Keywords

Main Subjects


[1] Schüger S., Comparison of Different LoopBioreactors, Bioproc. Eng., 9, p. 215 (1993).
[2] Larsen E. B., U-Shape and/or Nozzle U-Loop Fermentor and method of carrying out a Fermentation Process, US. Pat. 6492135B1 (2002).
[3] Blenke H., LoopReactors, Adv. Biochem. Eng., 13, p. 121 (1979).
[4] Lars J., Method and Means for the Production of a Microorganism Cell Mass, EP. Pat. 0306466A2 (1989).
[5] Kurt S., Lars J., Henrik E., Method of Fermentation, WO. Pat. 016460A1 (2003).
[6] Chisti Y., "Airlift Bioreactors", Elsevier,London, (1989).
[7] Yazdian F., Shojaosadati S.A., Nosrati M., Mehrnia M.R., Vasheghani-Farahani E., Study of Geometry and Pperational Conditions on Mixing time, Gas Hold up, Mass Transfer, Flow Regime and Biomass Production from Natural Gas in a Horizontal Tubular Loop Bioreactor, Chem. Eng. Sci., 64, p. 540 (2009).
[8] Koffas M., Odom J.M., Schenzle A., High Growth Methanotrophic Bacterial Strains, WO. Pat. 0220728A2 (2002).
[9] Yazdian F., Hajizadeh S., Shojaosadati S.A., Khalilzadeh R., Jahanshahi M., Nosrati M., Production of Single Cell Protein from Natural Gas: Parameter Optimization and RNA Evaluation, Iranian J. Biotech., 3, p. 235 (2005).
[10] Yazdian F., Pesaran Hajiabbas M., Shojaosadati S.A., Nosrati M., Mehria M., Vasheghani-Farahani E., Evaluation of Gas Hold-Up and Mixing Time in Loop Bioreactors During Production of SCP from Natural Gas, The Second International Conference on Environmental, Industrial and Applied Microbiology, Seville, Spain (2007).
[11] Whittenbury R., Phillips K.C., Wilkinson J.F., Enrichment, Isolation and Some Properties of Methane Utilizing Bbacteria, J. Gen. Microbiol., 61, p. 205 (1970).
[12] DaltonH., The Leeuwenhoek Lecture 2000 The Natural and Unnatural History of Methane-Oxidizing Bacteria, Philosophical Transactions of the Royal Society B: Biological Sciences, 360, p. 1207 (2005).
[13] Urmann K., Norina E.S., Schroth M.H., Zeyer J., Methanotrophic Activity in a Diffusive Methane/ Oxygen Counter-Gradient in an Unsaturated Porous Medium, J. Contam. Hydrol., 94, p. 126 (2005).
[14] Ziegler H., Meister D., Dunn I.J., The Tubular Loop Fermentor: Oxygen Transfer, Growth Kinetics, and Design, Biotech. Bioeng., XIX, p. 507 (1977).
[15] Papagianni M., Matty M., Kristiansen B., Design of a Tubular Loop Bioreactor for Scale-Up and Scale-Down of Fermentation Processes, Biotech. Prog., 19, p. 1498 (2003).
[16] Wen J., Chen Y., Chen D., Jia X., Removal of Ethyl Acetate in Air Streams Using a Gas-Liquid-Solid Three-Phase Flow Airlift Loop Bioreactor, Biochem. Eng. J., 24, p. 135 (2005).
[17] White E.A.,  Improvement  in  or  Relating  to Fermentation Processes for Converting Methane into Proteinaceous Material, UK. Patent, 1463295 (1977).
[18]  Papagianni M., Matty M., Kristiansen B., Citric Acid Production and Morphology of Aspergillus niger as Functions of the Mixing Intensity in a Stirred Tank and a Tubular Loop Bioreactor, Biochem. Eng. J.,2, p. 197 (1998).
[19] Taweel A.M., Yan J., Azizi F., Odedra D., Gomma H.G., Using in-Line Static Mixers to Identify Gas-Liquid Mass Transfer Processes, Chem. Eng. Sci.,60, p. 6378 (2005).
[20] Sheehan B.T., Johnson M.J., Production of Bacterial Cells from Methane, Appl. Microbiol.,21,p. 511 (1971).
[21] Lamb S.C., Garver J.C., Batch- and Continuous- Culture Studies of a Methane-Utilizing Mixed Culture, Biotech. Bioeng., 22, p. 2097 (1980).
[22] Coulson J.M., Richardson J.F., Backhurst J.R., Harker J.H., "Chemical Engineering", Pergamon,Oxford, (1990).
[23] Popovic M., Robinson C.W., Mixing Characteristics of External Loop Airlifts: Non-Newtonian Systems, Chem. Eng. Sci., 45, p. 1405 (1993).
[24] Rousseau J., Bu’Lock J.D., Mixing Characteristics of A Simple Airlift, Biotech. Lett., 2, p. 475 (1980).
[25] Gavrilescu M.,  Tudose R.Z.,  Mixing  Studies in External-Loop Airlift Reactors, Chem. Eng. J., 66, p. 97 (1997).
[26] Weiland P., Influence of Draft Tube Diameter on Operation Behavior of Airlift Loop Reactors, Ger. Chem. Eng., 7, p. 374 (1984).
[27] Chisti M.Y.,  Kasper M.,  Moo-Young M.,  Mass Transfer in External Loop Airlift Bioreactors Using Static mixers, Canadian J. Chem. Eng., 68, p. 45 (1990).
[28] Choi K.H., Han B.H., Lee W.K., Effect of Horizontal Connection Pipe Length on Gas Hold up and Volumetric Oxygen Transfer Coefficient in External Loop Airlift Reactor, HWAHAK KONGHAK, 28, p. 220 (1990).
[29] Petrović D.Lj., Pošarac D., Prediction of Mixing Time in Airlift Reactors, Chem. Eng. Comm., 133, p. 1 (1995).
[30] Yazdian F., Shojaosadati S.A., Nosrati M., Pesaran HajiAbbas M., Vasheghani-Farahani E., Investigation of Gas Properties, Design, and Operational Parameters on Hydrodynamic Characteristics, Mass Transfer, and Biomass Production from Natural Gas in an External Airlift Loop Bioreactor, Chem. Eng. Sci., 64, p. 2455 (2009).
[31] Lu X., Ding J., Wang Y., Shi J., Comparison of the Hydrodynamics and Mass Transfer Characteristics of a Modified Square Airlift Reactor with Common Airlift Reactors, Chem. Eng. Sci., 55, p. 2257 (2000).
[32] Mirón S.A., García C.M.C., Camacho G.F., GrimaM.E., Chisti Y., Mixing in Bubble Column and Airlift Reactors, Chem. Eng. Res. Des., 82, p. 1367 (2004).
[33] BelloR.A., Robinson C.W., Moo-Young M., Liquid Circulation and Mixing Characteristics of Airlift Contactors, Canadian J. Chem. Eng., 62, p. 573 (1984).
[34] Joshi J.B., Ranade V.V., GharatS.D., Lele S.S., Sparged LoopReactors, Canadian J. Chem. Eng., 68, p. 705 (1990).
[35] Yazdian  F.,  Shojaosadati  S.A.,  Nosrati  M., Vasheghani-Farahani E., Study of Hydrodynamic, Mass Transfer, Energy Consumption and Biomass Production from Natural gas in a Forced-Liquid Vertical Tubular Loop Bioreactor, Biochem. Eng. J., 49, p. 192 (2009).
[36] Chisti M.Y., Jauregui-Haza U.J., Oxygen Transfer and Mixing in Mechanically Agitated Airlift Bioreactors, Biochem. Eng. J., 10, p. 143 (2002).
[37] Fadavi A., Chisti Y., Gas-Liquid Mass Transfer in a Novel Forced Circulation Loop Reactor, Chem. Eng. J., 112, p. 73 (2005).
[38] Fadavi A., Chisti Y., Gas Hold Up and Mixing Characteristics of a Novel Forced Circulation Loop Reactor, Chem. Eng. J., 131, p. 105 (2007).
[39] Papagianni M., Matty M., Kristiansen B., Citric Acid Production and Morphology of Aspergillus Niger as Functions of the Mixing Intensity in a Stirred Tank and a Tubular Loop Bioreactor, Biochem. Eng. J., 2, p. 197 (1998).
[40] Verlaan P., Van E.A.M.M., Tramper J., Van’t R.K., Luyben K.Ch.A.M., Estimation of Axial Dispersion in Individual Sections of an Airlift-Loop Reactor, Chem. Eng. Sci., 44, p. 1139 (1989).
[41] Bello R.A., Robinson C.W., Moo-Young M., Gas Hold-up and Volumetric Mass Transfer Coefficient in Airlift Contactors, Biotech. Bioeng., 27, p. 369 (1985).
[42] Chisti M.Y., Halard B., Moo-Young M., Liquid Circulation in Airlift Reactors, Chem. Eng. Sci., 43, p. 451 (1988).
[43] Kawase Y., Tsujimura M., Yamaguchi T., Gas Hold Up in External Loop Airlift Bioreactors, Bioproc. Biosys. Eng., 12, p. 21 (1995).
[44] AkitaK., Yoshida F., Gas Hold-Up and Volumetric Mass Transfer Coefficient in Bubble Columns, Ind. Eng. Chem. Proc. Des. Dev., 12, p. 76 (1973).
[45] Schumpe A., Deckwer W.D., Viscous Media in Tower Bioreactor: Hydrodynamic Characteristics and Mass Transfer Properties, Bioproc. Eng., 2, p. 79 (1987).
[46] Chisti  M.Y.,  Fujimoto  K.,  Moo-Young  M., Hydrodynamic and Oxygen Mass Transfer Studies in Bubble Columns and Airlift Bioreactors, Paper 117a presented at AICHE Annual Meeting, Miami Beach (1986).
[47] Bello R.A.,  Robinson  C.W.,  Moo-Young  M., Prediction of the Volumetric Mass Transfer Coefficient in Pneumatic Contactor, Chem. Eng. Sci., 40, p. 53 (1985b).
[48] Chisti  M.Y.,  Halard  B.,  Moo-Young M.,  Liquid Circulation in Airlift Reactors, Chem. Eng. Sci., 43, p. 451 (1988).
[49] Schumpe  A.,  “Die  Chemische  Bestimmung  von Phasengrenzflächen in Blasensäulen Bei Uneinheitlichen Blasengrößen,” Dr. Thesis, Universität Hannover (1981).
[50] Deckwer  W.D,  Nguyen-Tien  K.,  Schumpe  A., Serpemen Y., Oxygen Mass Transfer into Aerated CMC Solutions in a Bubble Column, Biotech. Bioeng., 24, p. 461 (1982).
[51] Mohanty K., Dasb D., Biswas M.N., Mass Transfer Characteristics of a Novel Multi-Stage External Loop Airlift Reactor, Chem. Eng. J., 133, p. 257 (2007).
[52] Nikakhtari  H.,  Hill  G.A.,  Hydrodynamic  and Oxygen Mass Transfer in an External LoopAirlift Bioreactor with a Packed Bed, Biochem. Eng. J., 27, p. 138 (2005).
[53] Choi K.H., Circulation of Gas and Liquid Phases in External Loop Airlift Reactors, Chem. Eng. Comm., 160, p. 103 (1997).
[54] Sheehan B.T., Johnson M.J., Production of Bacterial Cells from Methane, Appl. Microbiol., 21, p. 511 (1971).
[55] Lamb  S.C.,  Garver  J.C.,  Batch- a nd  Continuous- Culture Studies of a Methane-Utilizing Mixed Culture, Biotech. Bioeng., 22, p. 2097 (1980).
[56] Yinghao  Y.,  Ramsay  J.A.,  Ramsay  B.A., On-Line Estimation of Dissolved Methane Concentration During Methanotrophic Fermentations, Biotech. Bioeng., 95, p. 788 (2006).
[57] Volesky B., Zajic J.E., Batch Production of Protein from Ethane and Ethane-Methane Mixtures, Appl. Microbiol., 21, p. 614 (1971).
[58] Vary P.S., Johnson M.J., Cell Yields of Bacteria Grown on Methane, Appl. Microbiol., 15, p. 1473 (1967).
[59] House A., Place E., Improvement in or Relating to the Fermentation of Methane Utilizing Microorganism, GB. Patent, 1270006 (1972).
[60] Harrison  E.F.,  Doddema  H.J., P rocess  for  the Production of Micro-Organisms, US. Patent 4042458 (1977).
[61] Yazdian F.,  Shojaosadati S.A.,  Nosrati M.,  Malek KH., Mehrnia M.R., On-Line Measurement of Dissolved Methane Concentration During Methane Fermentation in a Loop Bioreactor, Iran. J. Chem. & Cehm. Eng., 28, p. 85 (2009).