Document Type: Research Article

Authors

1 Department of Chemistry, University of Alzahra, Tehran, I.R. IRAN

2 School of Chemistry, College of Science, University of Tehran, Tehran, I.R. IRAN

Abstract

3,4-ِDihydropyrano[c]chromene derivatives were synthesized using sulfonic acid functionalized silica (SiO2-Pr-SO3H) as a highly efficient heterogenous solid acid catalyst via one-pot three-component condensation of aromatic aldehydes with malononitrile and 4-hydroxycoumarin in excellent yields.

Keywords

Main Subjects

[1] Foye W.O., "Principi di Chimica Farmaceutica", Piccin: Padova, Italy, (1991).

[2] Ellis, G. P. "The Chemistry of Heterocyclic Compounds. In Chromenes, Chromenes, and Chromenes", Weissberger, A. Taylor, E. C. Eds; John Wiley: New York, vol 2:13 (1977).

[3] Hafez E.A.A., Elnagdi M.H., Elagamey A.G.A., EL-Taweel F.M.A.A.,Nitriles in Heterocyclic Synthesis: Novel Synthesis of Benzo[c]-Coumarin and of Benzo[c]Pyrano[3,2-c]Quinoline Derivatives, Heterocycles, 26, p. 903 (1987).

[4] Tanabe A., Nakashima H., Yoshida O., Yamamoto N., Tenmyo O., Oki T., Inhibitory Effect of New Antibiotic, Pradimicin A on Infectivity, Cytopathic Effect and Replication of Human Immunodeficiency Virus in Vitro, J. Antibiot., 41, p. 1708 (1988).

[5] Shijay G., Cheng H.T., Chi T., Ching-Fa Y., Fluoride Ion Catalyzed Multicomponet Reactions for Efficient Synthesis of 4H-Chromene and N-Arylquinoline Derivates in Aqueous Media, Tedrahedron, 64, p. 9143 (2008).

[6] Bolognese A., Correale G., Manfra M., Lavecchia A., Mazzoni O., Novellino E., La colla P., Sanna G., Loddo R., Antitumor Agents. 3. Design, Synthesis, and Biological Evaluation of New Pyridoisoquinolindione and Dihydrothienoquinolindione Derivatives with Potent Cytotoxic Activity. J. Med. Chem., 47, p. 849 (2004).

[7] Bayer T.A., Schafer S., Breyh H., Breyhan O., Wirths C., Treiber G.A., A Vicious Circle: Role of Oxidative Stress, Intraneuronal Aβ and Cu in Alzheimer's Disease Multhaup, Clin Neuropathol., 25, p. 163 (2006).

[8] Fokialakis N., Magiatis P., Chinou L., Mitaka S., Tillequin F., Megistoquinones I II, Two Quinoline Alkaloids with Antibacterial Activity from the Bark of Sarcomelicope megistophylla, Chem. Pharm. Bull., 50, p. 413 (2002).

[9] Beagley P., Blackie M.A.L., Chibale K., Clarkson C., Meijboom R., Moss J.R., Smith P., Su, H. Meijboom R., Moss J.R., Smith P., Su, H. Synthesis and Antiplasmodial Activity in Vitro of New Ferrocene-Chloroquine Analogues,, Dalton Trans, p. 3046 (2003).

[10] Morgan L.R., Jursic B.S., Hooper C.L., Neumann D.M., Thangaraj K., Leblance B., Anticancer Activity for 4,4′-Dihydroxybenzophenone-2,4-Dinitrophenylhydrazone (A-007) Analogues and Their Abilities to Iinteract with Lymphoendothelial Cell Surface Markers, Bioorg. Med. Chem. Lett., 12, p. 3407 (2002).

[11] Bonsignore L., Loy G., Secci D., Calignano A., Synthesis and Pharmacological Activity of 2-oxo-(2H) 1-Benzopyran-3-Carboxamide Derivatives, Eur. J. Med. Chem., 28, p. 517 (1993).

[12] Cannon  J.G.,  Khonji  R.R.,  Centrally  Acting Emetics. 9. Hofmann and Emde Degradation Products of Nuciferine, J. Med. Chem., 18, p. 110 (1975).

[13] Biot C., Glorian G., Maciejewski L.A., Brocard J.S., Domarle O., Blampain G., Blampain G., Blampain P., Georges A.J., Abessolo H., Dive D., Lebibi J., Synthesis and Antimalarial Activity in Vitro and in Vivo of a New Ferrocene-Chloroquine Analogue, J. Med. Chem., 40, p. 3715 (1997).

[14] Abdel  Galil  F.M.,  Riad  B.Y.,  Sherif  S.M., Elnagdi M.H., Activated Nitrileds in Heterocyclic Synthesis: A Novel Synthesis of 4-Azoloyl-2-Aminoquinolines, Chem. Lett., p. 1123 (1982).

[15] Shaker R.M.,Synthesis and Reactions of Some New 4H-Pyrano[3,2-c]benzopyran-5-One Derivatives and Their Potential Biological Activities,Pharmazie, 51, p. 148 (1996).

[16] Balalaie S.,  Abdolmohammadi S.,  Novel  and Efficient Catalysts for the One-Pot Synthesis of
3,4-Dihydropyrano[c]Chromene Derivatives in Aqueous Media, Tetrahedron Lett., 48, p. 3299 (2007).

[17] Kidwai M., Saxena S., Convenient Preparation of Pyrano Benzopyranes in Aqueous Media., Synth. Commun., 36, p. 2737 (2006).

[18] Heravi M.M., Alimadadi Jani B., Derikvand F., Bamoharram F.F., Oskooie H.A., Three Component, One-Pot Synthesis of Dihydropyrano[3,2-c] Chromene Derivatives in the Presence of H6P2W18O62 .18H2O as a Green and Recyclable Catalyst, Catal. Commun., 10, p. 272 (2008).

[19] Seifi M., Sheibani H., High Surface Area MgO as a Highly Effective Heterogeneous Base Catalyst
for Three-Component Synthesis of Tetrahydrobenzopyran and 3,4-Dihydropyrano [c]chromene Derivatives in Aqueous Media. Catal. Lett., 126, p. 275 (2008).

[20] Khurana J.M., Kumar S., TetraButhylAmmonium Bromide (TBAB): A Neutral and Efficient Catalyst for the Synthesis of Biscoumarin and 3,4-Dihydopyrano[c]Chromene Derivatives in Water and Solvent-Free Conditions, Tetrahedron Lett., 50, p. 4125 (2009).

[21] Mohammadi Ziarani G., Badiei A., Miralami A., A Study of the Diastereoselectivity of Diels-Alder Reactions on the Ce-SiO2 as Support, Bull. Korean Chem. Soc., 29, 47-50 (2008).

[22] Mohammadi Ziarani G., Badiei A., Abbasi A., Farahani Z., Cross-aldol Condensation of Cycloalkanones and Aromatic Aldehydes in the Presence of Nanoporous Silica-Based Sulfonic Acid (SiO2-Pr-SO3H) under Solvent Free Conditions, Chin. J. Chem., 27, p. 1537 (2009).

[23] Mohammadi Ziarani G., Badiei A., Khaniania Y., Haddadpour M., One Pot Synthesis of Polyhydroquinolines Catalyzed by Sulfonic Acid Functionalized SBA-15 as a New Nanoporous Acid Catalyst under Solvent Free Conditions, Iran. J. Chem. & Chem. Eng., 29(2), p. 1(2010).

[24] a) Shaabani A., Maleki A., A Fast and Efficient Method for the Synthesis of 1,5-Benzodiazepine Derivatives under Solvent-Free Conditions, Iran J. Chem.& Chem. Eng., 26, p. 93 (2007).

       b) Bigdeli M.A., Nahid N., Heravi M.M., Sulphuric Acid Adsorbed on Silica Gel. A Remarkable Acetylation Catalyst, Iran. J. Chem. & Chem. Eng., 19, p. 37 (2000).

[25] a) Karimi B., Khalkhali M., Solid Silica-Based Sulfonic Acid as an Efficient and Recoverable Interphase Catalyst for Selective Tetrahydropyranylation of Alcohols and Phenols, J. Mol. Catal. A.: Chem., 232, 113-117 (2005).

       b) Karimi B., Khalkhali M., Silica Functionalized Sulfonic Acid as a Recyclable Interphase Catalyst for Chemoselective Thioacetalization of Carbonyl Compounds in Water, J. Mol. Catal. A.: Chem., 271, p. 75 (2007).

[26] Lim M.H., Blanford C.F., Stein A., Synthesis of Ordered Microporous Silicates with Organosulfur Surface Groups and Their Applications as Solid Acid Catalysts, Chem. Mater., 10, p. 467 (1998).

[27] Badley R.D., Ford W.T., Silica-Bound Sulonic Acid Catalysts, J. Org. Chem., 54, 5437-5443 (1989).

[28] Van Rhijn W.M., De Vos D.E., Sels B.F., Bossaert W.D., Sulfonic Acid Functionalised Ordered Mesoporous Materials as Catalysts for Condensation and Esterification Reactions, Chem. Commun., p. 317 (1998).