An Optimum Routine for Surface Modification of Ceramic Supports to Facilitate Deposition of Defect-Free Overlaying Micro and Meso (Nano) Porous Membrane

Document Type: Research Article

Authors

Nanostructure Materials Research Center (NMRC), Sahand University of Technology, P.O. Box 51335-1996 Tabriz, I.R. IRAN

Abstract

In this work, a simple and effective way to modify the support surface is developed and a nanostructure ceramic support to facilitate deposition of a defect-free overlying micro and meso (nano) porous membrane is obtained. To achieve high performance nanocomposite membranes, average pore size of outer surface of support was reduced by dip-coating in submicron and nano α-alumina slurries. In this respect, the effects of several parameters such as: solid content, dipping time, vacuum pressure, heating rate and number of coated layers on microstructure of the fabricated layers were investigated. The obtained results showed that the optimum routine for this technique was twice coating of 5wt% submicron slurry without applying vacuum followed by vacuum dip-coating of 5wt% submicron and 1wt% nano alumina slurry. Pore size of the unmodified membrane support was calculated using permeance data and the obtained result was 540 nm. After twice modification with submicron alumina slurry without vacuum, average pore size of surface decreases significantly. More surface modification by vacuum dip-coating of alumina submicron and nano particles slurries results in decreasing of average pore size of intermediate layers to nanometric scale (

Keywords

Main Subjects


[1] Agoudjil N., Benkacem T., Synthesis of Porous Ttitanium Dioxide Membranes, Desalination, 206, p. 531, (2007).

[2] Masmoudi S., Larbot A., El Feki H., Ben Amar R., Elaboration and Properties of Nnew Ceramic Microfiltration Membranes from Natural and Synthesized Apatite, Desalination, 190, p. 89 (2006).

[3] Yang C., Zhang G., Xu N., Shi J., Preparation and Application in Oil-Water Separation of ZrO2/a-Al2O3 MF Membrane, J. Membr. Sci., 142, p. 235 (1998).

[4] Wang Y.H., Liu X.Q., Meng G.Y., Preparation and Properties of Supported 100% Titania Ceramic Membranes, Mater. Res. Bull., 43, p. 1840 (2008).

[5] Khemakhem, S., Ben Amar, R., Larbot, A., Synthesis and Characterization of a New Inorganic Ultrafiltration Membrane Composed Entirely of Tunisian Natural Illite Clay, Desalination, 206, p. 210 (2007).

[6] Zhang H., Quan X., Chen S., Zhao H., Zhao Y., Li W., Zirconia and Titania Composite Membranes for Liquid Phase Separation: Preparation and Characterization, Desalination, 190, p. 172 (2006).

[7] Benito J.M., Conesa A., Rubio F., Rodriguez M.A., Preparation and Characterization of Tubular Ceramic Membranes for Treatment of Oil Emulsions, J. Eur. Ceram. So., 25, p. 1895 (2005).

[8] Saffaj N. Alami Younssi S., Albizane A., Messouad, A., Bouhria M., Persin M., Cretin M., Larbot A., Preparation and Characterization of Ultrafiltration Membranes for Toxic Removal from Wastewater, Desalination, 168, p. 259 (2004).

[9] Kovalevsky A.V., Kharton V.V., Snijkers F.M.M., Cooymans J.F.C., Luyten J.J., Marques F.M.B., Oxygen Transport and Stability of Asymmetric SrFe(Al)O3−δ-SrAl2O4 Composite Membranes, J. Membr. Sci., 301, p. 238 (2007).

[10] Ernst B., Haag S., Burgard M., Permselectivity of a Nickel/Ceramic Composite Membrane at Elevated Temperatures: A New Prospect in Hydrogen Separation, J. Membr. Sci., 288, p. 208 (2007).

[11] Gestel T.V., Vandecasteele C., Buekenhoudt A., Dotremont C., Luyten J., Leysen R., Van Der Bruggen B., Maes G., Alumina and Titania Multilayer Membranes for Nanofiltration: Preparation, Characterization and Chemical Stability, J. Membr. Sci., 207, p. 73 (2002).

[12] Burggraaf A.J., Cot L., "Fundamentals of Inorganic Membrane Science and Technology, Elsevier Science and Technology", 4th Edition, Elsevier,Amsterdam,Netherlands, (1996).

[13] Cao G.Z., Brinkman H.W., Meijerink J., de Vries K.J., Burggraaf A.J., Pore Narrowing and Formation of Ultrathin Yyttria-Stabilized Zirconia Layers in Ceramic Membranes by Chemical Vapor Deposition/ Electrochemical Vapor Deposition, J. Am. Ceram. Soc., 76, p. 2201 (1993).

[14] Lin Y.S., Burggraaf A.J., Experimental Studies on Pore size Change of Porous Ceramic Membranes After Modification, J. Membr. Sci., 79, p. 65 (1993).

[15] Lin Y.S., A Theoretical Analysis on Pore Size Change of Porous Ceramic Membranes After Modification, J. Membr. Sci., 79, p. 55 (1993).

[16] Tsai C.Y., Tama S.Y., Lu Y., Brinker C.J., Dual-Layer Asymmetric Microporous Silica Membranes, J. Membr. Sci., 169, p. 255 (2000).

[17] Babaluo A.A., Kokabi M., Manteghian M., Sarraf Mamoory M.R., A Modified Model for Alumina Membranes Formation by Gel-Casting and Dip-Coating, J. of the European Ceramic Society, 24, p. 3779 (2004).

[18] Ahmadian Namini P., Babaluo A.A., Peyravi M., Akhfash M., Jannatdoust E., Synthesis of Submicron Aumina Powder via a New Wet Chemical Method, "The 5th International Chemical Engineering Congress (IChEC 2008)", 2-5 Jan, 2008, Kish Island, Iran.

[19] Tahmasebpour M., Babaluo A.A., Shafiee S., Pipelzadeh E., Studies on the Synthesis of α-Al2O3 Nanopowders by Polyacrylamide Gel Method, Powder Technology, 191, p. 91 (2009).

[20] Anderson M. A., Gieselmann M. J., Xu Q., Titania and Alumina Membranes, J. Membr. Sci., 39, p. 243 (1988).

[21] Lin Y.S., Burggraaf A.J., Preparation and Characterization of High Temperature Thermally Stable Alumina Membrane Composite, J. Am. Ceram. Soc., 74, p. 219 (1991).

[22] Lin Y.S., Burggraaf A.J., Experimental Studies on Pore Size Change of Porous Ceramic Mmembranes after Modification, J. Membr. Sci.79, p. 65 (1993).