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ABSTRACT: A Real-Time Optimization (RTO) strategy incorporating the fuzzy sets theory  

is developed, where the problem constraints obtained from process considerations are treated in fuzzy 

environment. Furthermore, the objective function is penalized by a fuzzified form of the key process 

constraints. To enable using conventional optimization techniques, the resulting fuzzy optimization 

problem is then reformulated into a crisp programming problem. The crisp programming problem 

is solved using both Sequential Quadratic Programming (SQP) and Heuristic Random Optimization (HRO) 

techniques for comparison purposes. The proposed fuzzy RTO strategy is demonstrated via  

the Tennessee Eastman benchmark process, and is also compared with a crisp RTO strategy from 

the literature. Remarkable economical improvement is found over the crisp RTO. In spite of the 

fuzzified constraints, the proposed strategy yields smooth operation of the process, while 

maintaining the product quality within the acceptable range. 
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INTRODUCTION 

The ever increasing competition, high cost and 

limitation of energy resources along with tough environmental 

regulations have motivated manufacturing companies and 

academia to cooperate on lowering the production costs. 

As a result, the Real-Time Optimization (RTO)  

of processes has gained considerable attention over the 

past few years. Generally, the RTO refers to any control 

system designed for economic optimization of processes [1]. 

It improves process economics by successively moving 

the operating conditions toward the plant optimum, in 

spite of model uncertainties [2]. 

The implementation of an RTO system on a chemical 

plant may be subject to various constraints. The constraints 

 

 

 

 

may be upper and lower limits for some process variables 

that if violated, the plant may undergo difficulties concerning 

safe and stable operation of equipment, product quality, 

or even shutdown. However, there would not be crisp criteria 

for the violation of the constraints. In other words, it is 

the extent to which a constraint is violated that affects the 

process operation rather than exceeding a specified value. 

This supports the fact that real-world situations are not so 

definite, and decision-making in such circumstances could 

be rather subjective [3]. The idea of fuzzy sets proposed by 

Zadeh [4] serves to address the aforementioned issue. 

On the other hand, it is likely that the optimum points 

coincide with the problem constraints. Therefore,  
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Fig. 1: Flowsheet of the Tennessee Eastman process. 

 

the incorporation of the fuzzy logic into the optimization 

problems could potentially improve the optimization results. 

This is the basic idea that motivates the use of fuzzy 

decision making in the RTO systems. 

To date, several studies have been focused on the 

concept and application of RTO in chemical processes.  

Duvall & Riggs [5] developed an RTO strategy for the 

Tennessee Eastman (TE) process proposed by [6]. The 

RTO strategy effectively decreased the process operating 

cost from the base case value of 170 ($ h-1) [6] to 120 ($ h-1).  

However, it was still higher than the optimum value  

of 114 ($ h-1) reported by Ricker [7], who used the exact 

process model to solve the optimization problem in  

an off-line manner. The value reported by Ricker [7] was 

considered the minimum value that can be achieved via 

an on-line optimization system.  Later on, Golshan et al. [8] 

obtained the minimum achievable operating cost in an 

on-line manner through their RTO algorithm.  However, 

all these results have been obtained according to a crisp 

interpretation  

of the process constraints, which may be rather subjective 

in nature. 

In this paper, the fuzzy decision-making is incorporated 

into the crisp RTO algorithm proposed by Golshan et al.  [8]. 

The TE process has been chosen as the benchmark to compare 

the results against the crisp RTO algorithm. In fact, the two 

studies follow a similar procedure, unless the optimization 

problem has been fuzzified in this work. The fuzzy RTO  

is demonstrated through minimization of the plant operating 
 

cost where remarkable improvement is achieved over the 

crisp RTO. The rest of the paper is organized as follows. 

In next section, the TE process is briefly described.  

This is followed by control structure section which 

explains the control structure used to stabilize the 

process. Fuzzy real time optimization section details the 

fuzzy RTO algorithm. In results and discussion section, 

the results of the algorithm are shown and compared against 

the work of Golshan et al.  [8] so as to demonstrate the 

effectiveness of the proposed strategy. The paper is concluded 

with summarizing the main points in the last section. 

 
PROCESS  DESCRIPTION 

The TE process was introduced by Downs & Vogel [6]  

to serve as a complex control benchmark for educational 

and research purposes. It consists of five major units 

including a two-phase reactor, a product condenser, a separator, 

a stripper, and a recycle compressor. Fig. 1 illustrates the 

schematic flow and instrumentation diagram of the process. 

The following exothermic irreversible reactions take 

place in the reactor in the presence of a nonvolatile 

catalyst drops dissolved in the liquid phase. 

A(g)+C(g)+D(g) G(liq)     Product 1→  

A(g)+C(g)+E(g) H(liq)     Product 2→  

A(g)+E(g) F(liq)                Byproduct→  

 3D(g) 2F(liq)                     Byproduct→  
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Table 1a: Measured variables in the TE Plant. 

Variable name Variable number Variable name Variable number 

Separator cooling water outlet temperature 22 A feed (stream1) 1 

Component A in stream 6 23 D feed (stream2) 2 

Component B in stream 6 24 E feed (stream3) 3 

Component C in stream 6 25 A and C feed (stream4) 4 

Component D in stream 6 26 Recycle flow (stream8) 5 

Component E in stream 6 27 Reactor feed rate (stream6) 6 

Component F in stream 6 28 Reactor pressure 7 

Component A in stream 9 29 Reactor level 8 

Component B in stream 9 30 Reactor temperature 9 

Component C in stream 9 31 Purge rate (stream9) 10 

Component D in stream 9 32 Product separator temperature 11 

Component E in stream 9 33 Product separator level 12 

Component F in stream 9 34 Product separator pressure 13 

Component G in stream 9 35 Product separator underflow(stream10) 14 

Component H in stream 9 36 Stripper level 15 

Component D in stream 11 37 Stripper pressure 16 

Component E in stream 11 38 Stripper underflow (stream 11) 17 

Component F in stream 11 39 Stripper temperature 18 

Component G in stream 11 40 Stripper steam flow 19 

Component H in stream 11 41 Compressor work 20 

  Reactor cooling water outlet temperature 21 

 

where G and H are the desired products; B is an inert;  

F is a byproduct. These components together with the 

reactants (A, C, D, and E) make up the total of eight 

components existing in the process. The whole un-reacted 

gases get out of the reactor along with the products.  This 

is due to the fact that the reactor has no effluent stream 

other than the gas outlet (Fig. 1). The partial condenser 

makes the reactor effluent a two-phase stream which  

is then separated into gas and liquid streams in the flash 

separator. The gas stream is pressurized by the 

compressor and recycled to the reactor. A purge stream is 

provided to avoid accumulation of the non-condensable 

component B, excess reactants, and the byproduct F.  

The separator bottom stream goes to the stripper where 

the reactants D and E are separated and recycled back to 

the reactor. The stripper underflow is the product of the plant 

containing mainly G and H. 

Downs & Vogel [6] offered an intentionally obscure 

FORTRAN code to simulate the process and asked the research 

community not to modify the code for the sake of meaningful 

comparisons. The code provides 12 inputs (as manipulating 

variables) and 41 outputs (as measurements) corrupted by 

zero mean white noise. The measurements and manipulating 

variables are listed in Tables 1a and 1b, respectively. 

 

CONTROL  STRUCTURE 

A possible control structure for the TE process should 

be able to effectively maintain the main process variables 

(i.e., the production rate and product quality defined  

in terms of G/H ratio) during normal operations  

and upsets [6]. Moreover, it should prevent the system 

from violating the safety and process constraints  

as described by Downs & Vogel [6].  

McAvoy & Ye [9] proposed a control structure for the 

TE process. It consists of single-input-single-output controllers 

with most of them being cascade loops. This structure, 

while featured with PI controllers, was claimed to be 

appropriate for upper-level control strategies such as 

online optimization, as it is successfully implemented by 

Golshan et al. [8,10] in their RTO studies. To allow meaningful 

comparisons with the foregoing studies, the same control 

structure with PI controllers is used in this work.
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Table 1b: Manipulating Variables in the TE Plant. 

Variable name Variable Number 

D feed flow (stream 2) 1 

E feed flow (stream 3) 2 

A feed flow (stream 1) 3 

A and C feed flow (stream 4) 4 

Compressor recycle valve 5 

Purge valve (stream 9) 6 

Separator pot liquid flow (stream 10) 7 

Stripper liquid product flow (stream 11) 8 

Stripper steam valve 9 

Reactor cooling water flow 10 

Condenser cooling water flow 11 

Agitator speed 12 

 

Application of other control strategies such as model 

predictive control for set-point tracking is investigated by  

Jockenhövel et al. [11]. 

Table 2 provides the configuration and tunings of the 

loops whose setpoints were used in the fuzzy RTO.  

More details on the control structure can be found in [9]. 

 

FUZZY  REAL-TIME  OPTIMIZATION 

As mentioned previously, the general procedure  

used in this study is similar to the one developed  

by Golshan et al. [8]. This procedure is summarized here for 

the sake of clarity. Then, the fuzzification phase will be 

described in the following subsections.   

The RTO algorithm encompasses several parts, namely 

the nonlinear state space model of the TE process proposed 

by Ricker & Lee [12], an Extended Kalman Filter (EKF) 

used to update the model online, and an optimizer which  

is composed of the objective function, constrains, and  

an optimization method. Fig. 2 shows the schematic diagram 

of the algorithm. As shown in Fig. 2, the plant data are 

sent to the EKF where the model parameters and states 

are estimated online. Each time the optimizer is triggered,  

a set of initial guesses for the decision variables (setpoints) 

are sent to the optimizer where the updated model and  

the plant measurements are used to evaluate the objective 

function and constraints. Once the optimizer is converged, 

the optimum setpoints are sent to the plant through first 

order filters with time constants of 7 h. This is due to the 

fact that the plant may go unstable if the setpoints change 

rapidly [8]. 

The application of fuzzy logic in optimization 

algorithms is appreciated in recent studies [13-14].  

The fuzzy RTO system developed in this study benefits 

from a fuzzy framework in which the fulfillment of 

constraints are fuzzy variables qualifying the extent to 

which the constraints are satisfied.  In this framework, the 

objective function is modeled in fuzzy environment as 

well.  Then, the problem is reformulated to be solved via 

a crisp optimization method. The fuzzy RTO algorithm 

and its constituting elements are detailed in the next 

subsections. 

 

Nonlinear process model 

Ricker & Lee [12] developed a nonlinear mechanistic 

model for the TE process based solely on the material 

balance of the process.  The model was aimed  

at capturing the key characteristics of the process without 

including unnecessary details. To do this, they added PI 

temperature-control loops so that the reactor and 

separator temperatures can be converted from dependent 

variables to independent variables. Thus, the two variables 

may be input to the model rather than be model outputs, 

removing the need for heat calculations.  The nonlinear 

model is expressed in the following general form. 

( ) ( )f , u, , y g ,u,ϕ = ϕ θ = ϕ θ�                                        (1) 

where �, u, �, y are states, inputs, parameters, and 

outputs of the model, respectively.  The model consists of 

10 inputs, 26 states, 15 parameters, and 23 outputs which 

are provided in [12]. The state variables are the molar 

holdups of the eight components calculated for different 

parts of the process. 

The model updating required for the optimization 

algorithm (Fig. 2) is accomplished using an Extended 

Kalman Filter (EKF) developed by Ricker & Lee [12]. 

The EKF uses the plant measurements for continuous 

estimation of the states and parameters. The model 

outputs are then obtained from the EKF using  

the estimated states and parameters. It is worth noting that 

the efficiency of the RTO algorithm severely depends  

on the validity of the model states and parameters obtained 

from the EKF.  This is addressed in [8] 
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Table 2: Configuration and tunings of the PI controllers whose setpoints are used in the fuzzy RTO. 

�I (min.) Kc Manipulated variables Controlled variables 

200 500 (kg / h / %) E-Feed Flow Set point Reactor level 

300 -0.5 (m3/ h / %) Product Flow Set point Stripper level 

200 -2.5 (m3/ h / %) Its Bottom Flow Set point Separator level 

40 3.57 (kmol/m3) C-Feed Flow Set point Product rate 

40 0.05 D/E Feed ratio Product G/H Ratio 

300 -0.143 (kmol/h/kPa) A-Feed Flow Set point Reactor pressure 

50 1.0 Reactor Cooling Set point Reactor temperature 

10 10.0 (kg / h /º C) Steam Flow Set Point Stripper temperature 

20 0.08 (% / KW) Recycle Valve Compressor power 

100 -1.34 (kmol/h/%) Purge Rate Mole fraction of B in purge 

50 0.034  (º C/ kmol/h) Condenser Cooling Set Point Compressor outlet Flow 

100 -0.5 (º C / % ) Stripper Temperature Set Point Mole fraction of E in Product 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Schematic diagram of the RTO algorithm. 

 

where the EKF outputs are shown to follow the real 

process very well. A comprehensive description of  

the EKF combined with the nonlinear model can be found 

in [12]. The detailed description of the nonlinear model 

and EKF has also been presented in the two preceding 

work [8,10]. Since this study follows exactly the same 

model and updating method, they are not presented here. 

Problem formulation 

A fuzzy optimization problem can be stated in the 

following form [15-17]:  

j j

i

Minimize f (X)

Subject to g (X) b j 1,...,m

X 0 i 1,..., n

≤ =

≥ =
�

                             (2) 

Initial values of 
decision variables 

Measurements from 
plant 

Setpoints 
through filters 

States and 
parameters from 

EKF 

Plant 

On-line Model 
update algorithm 

with EKF 

Optimization Initialization Implementation 

Optimizer 
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where f(X) is the objective function to be minimized; 

j jg (X) b≤
�

 are the problem constraints that are generally 

nonlinear; Xi are the decision variables that must essentially be 

positive in this work. It is noted that equality constraints 

are converted to the above inequality constraints,  

as discussed later. Thus, g(X) in Eq. (2) includes the 

equality constraints as well. Assuming an aspiration 

level, z, for the optimum value of the objective function, 

Eq. (2) can be rewritten as [17]: 

j j

i

Find X such that f (X) z

g (X)  b j 1,...,m

X 0 i 1,..., n

≥

≤ =

≥ =

�

�
                                 (3) 

In Eqs. (2),(3), ≥
�

 and ≤
�

 denote the fuzzified version 

of ≥  and ≤  that bring the linguistic interpretation.  

In order to make more similarity between fuzzy objective 

function inequality and fuzzy constraints, it is possible  

to multiply the objective function inequality by (-1).  

This forms the following fuzzy optimization problem: 

Find X such that

B(X) D X 0

f (X) z
B , D

g(X) b

≤ ≥

− −� � � �
= =� � � �
� � � �

�
                                             (4) 

Each of the (m+1) rows of the matrix B (see Eq. (3)) 

can be represented by a fuzzy set, whose membership 

function is �k(X). Then, the membership function 

corresponding to the optimality of a potential decision in 

Eq. (4) can be obtained as [17]: 

{ }D k
k

(X) min (X) , k 1,...,m 1µ = µ = +                        (5) 

k (X)µ  may be interpreted as the degree to which  

X satisfies the kth row of the fuzzy inequality of k kB (X) D≤
�

. 

The decision maker chooses the X which maximizes D (X)µ : 

{ }k D
kX 0 X 0

max min (X) max (X) k 1,2,...m 1
≥ ≥

µ = µ = +         (6) 

In this work, linear-type membership functions  

are used, that is, 0 if the constraints are strongly violated and 

1 if they are fully satisfied, with monotonic increase  

in between as: 

k k k

k k k
k k k k k

k

k k

0 if B (X) D P

D P B (X)
(X) if D B (X) D P

P

1 if B (X) D

� > +
�

+ −�
µ = < ≤ +	

�
� ≤


(7) 

Pk is the element of the vector P that indicates the 

upper limit of acceptable violations of the constraints and 

objective function.  It has been shown that substituting 

Eq. (7) into Eq. (6), with some assumptions and 

rearrangements, would lead to the following optimization 

problem [17]: 

K k

KX 0
K

B (X) D
max min k 1,2,...m 1

≥

� �−
= +� �

µ� �
                (8) 

Introducing one new variable, �, which indicates the 

satisfaction degree of the constraints, the problem 

becomes as follows: 

,X

k k k k

max imize

Such that P B (X) D P

k 1,...,m 1 X 0

λ
λ

λ + ≤ +

= + ≥

                                 (9) 

If the optimal solution to Eq. (9) is the vector [�, X0], 

X0 is the maximizing solution of Eq. (6) [17]. The values 

of the vectors P and D used in this work are given in the 

Appendix. 

 

Decision Variables 

As mentioned before, the decentralized structure of 

MeAvoy & Ye [9] was used in this study.  Therefore, the 

available manipulating variables are the setpoints of the 

master loops in the structure, or that of the single loop 

(the compressor power).  It should be noted that since one 

of the setpoints corresponds to the product composition, 

which is to be constant for Mode 1 [6,8], it cannot be used as a 

decision variable.  Furthermore, the agitator speed was  

set to its maximum value since it has a positive effect on 

the reaction rates by maximizing the range of cooling 

duties [7,8]. Thus, the remaining 10 setpoints are 

considered the decision variables which are the same as 

those used in [8]. 

 

Fuzzification of constraints 

In order to ensure safe operation of the plant and 

maintaining key process variables as stipulated by the 
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designer, some constraints must be placed on the 

optimization algorithm. The constraints include lower and 

upper bounds for the decision variables (setpoints), constituting 

the inequality constraints. Also, an equality constraint  

is required for the product flowrate variability whose valid 

range is ±5%, and its frequency should be in the range of 

8-16 h-1 [6]. Another equality constraint is the steady-state 

material balance for the reactor. All the constraints 

considered in this study are the same as [8], therein more 

details are also provided. 

As mentioned before, each equality constraint is split 

into two inequality constraints, indicating the left and 

right margins of acceptance for the original equality 

constraint.  In crisp terms, it can be expressed as: 

eq,k k eq,k k k kC andC , , 0≤ α ≥ −β α β >                   (10) 

k
eq,k

k,desired

PV
C 1

PV
= −  

where Ceq,k is the original equality constraint that 

should be ideally zero; �k and �k are the acceptable margins of 

deviation from zero; PVk is the variable for which the 

constraint has been placed.  This way, the equality constraints 

can be treated fuzzily along with the inequality ones. 

The next step is to fuzzify the constraints.  There are 

10 decision variables, resulting in 20 inequality constraints  

as their lower and upper bounds. Furthermore, the two 

equality constraints add four additional inequality constraints 

(Eq. (10)). These constraints along with the objective 

function inequality make up a total of 25 inequality 

constraints, which are to be fuzzified. The constraints are 

fuzzified according to Eq. (7) where linear-type membership 

functions are employed. The parameters used in Eq. (7) 

are provided in the Appendix. 
 

Fuzzification of objective function 

The objective function is the plant operating cost 

provided by Downs & Vogel [6]. It represents  

the reactants and products losses in the purge stream,  

the reactants losses in the product stream, and the cost of 

steam consumption and compressor work. The operating 

cost is defined as follows: 

H

tot. 9 i,cst i,9

i A
i B

C F C x
=
≠

= +�                                                 (11) 

F

11 i,cst i,11 cmp Steam

i D

F C x 0.0536W 0.0318F
=

+ +�  

where Fi is the molar flow of component i (kmol h-1); 

Ci,cst is the cost of component i ($ kmol-1) provided  

by Downs & Vogel [6]; xi,j represents the mol fraction of 

component i in stream j; Wcmp and Fsteam are the compressor 

power (kW) and stripper steam flowrate (kg h-1), respectively. 

The objective function is penalized through adding 

some fuzzified constraints. The constraints include only 

the 10 original inequality plus the two equality constraints 

obtained from the process considerations, as given in 

Table A3 of the Appendix. The resulting fuzzified 

objective function is as follows: 

in ,i eq,1 eq,2

10

p 1 n 2 C 3 C 4 C

i 1

OF OF
=

� �
= η − η µ + η µ + η µ� �� �

� �
�        (12) 

tot. tot.min
n

tot.max tot.min

C C
OF

C C

−
=

−
 

1 2 3 410, 1, 50, 1η = η = η = η =  

where OFp and OFn are the penalized and normalized 

objective functions, respectively; �i are the weight 

factors; �cin and �ceq are the membership functions for the 

inequality and equality constraints, respectively.  The 

minimum and maximum operating costs (Ctot.min and 

Ctot.max) were set to 20 ($ h-1) and 500 ($ h-1), respectively.  

The inequality constraints used in Eq. (12) are expressed 

in normalized form such that they are fully satisfied if 

they are negative: 

i

min,i

in,i
i

max,i

PV
1 (if lower bound)

PV
C

PV
1 (if upper bound)

PV

�
−�

�
= 	
� −
�



                       (13) 

where Cin,i is the inequality constraint; PVi is the 

variable for which the inequality constraint is defined.  

Therefore, the corresponding membership functions  

are defined monotonically as: 

in ,i

in,i

i in,i
C in,i i

i

in,i i

1 C 0 (fullysatisfied)

d C
0 C d ,i 1, 2,...,10

d

100 C d (strongly violated)

≤�
�

−�
µ = < ≤ =	

�
�− >


 (14) 

where µcin,i is the membership function for the ith inequality 

constraint; di is the acceptable tolerance in normalized form 

provided in Table A3 of the Appendix. Also, the equality  
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constraints used in Eq. (12) are fuzzified as: 

eq1

eq1 eq1
eq,1

eq1 eq1

1 C 0.005

10.5C 1 0.1 C 0.005

10.5C 1 0.005 C 0.1

0 Otherwise

� ≤
�
� + − < < −

µ = 	
− + < <�
�



            (15) 

eq2

eq2 eq2
eq,2

eq2 eq2

1 C 0.005

200C 1 0.01 C 0.005

10.5C 1 0.005 C 0.1

0 Otherwise

� ≤
�
� + − < < −

µ = 	
− + < <�
�



 

where Ceq1 and Ceq2 correspond to the reactor material 

balance and product flowrate, respectively. The settings 

of the above functions (Eqs. (12), (14), (15)) were obtained 

using ad hoc methods and were deemed to be appropriate 

through extensive simulations.  The penalty terms in Eq. (12) 

affect the optimality of the objective function by increasing  

its value as the constraints are violated or not fully satisfied. 

Combining Eqs. (4), (9), (12), (14), and (15) constitutes 

the final optimization problem to be solved. 
 

RESULTS  AND  DISCUSSION 

In this section, the fuzzy RTO strategy is 

demonstrated via computer simulations. The simulations 

are performed on a PC with Intel Core 2 Duo 2.4GHz 

CPU and 4GB RAM. 
 

Optimization Method 

The fuzzy optimization problem described in the 

previous subsections can be solved by any crisp 

optimization methods [17]. In this study, the optimization 

problem was solved using two methods, namely 

Sequential Quadratic Programming (SQP) and Heuristic 

Random Optimization (HRO) proposed by Li & Rhinehart [18]. 

In effect, the HRO method was used to verify the results 

obtained from the SQP technique and ensure that the 

obtained results represent global optima. This is due to 

the fact that the SQP method, like other gradient-based 

optimization techniques, may be trapped in local optima 

as discussed in [10]. 

The execution frequency of the fuzzy RTO is chosen 

to be every 8 hours of the process operation, which is the 

same as in [8,10]. Also, no optimization is executed during 

the first 10 hours of operation when the process  

is allowed to reach steady state at the base case conditions  

as given in [6]. 

Simulation results 

As mentioned previously, Ricker [7] obtained the 

minimum achievable operating cost of 114 ($ h-1) for the 

base case in an off-line manner.  This result was obtained 

subject to crisp process constraints in the problem formulation. 

This minimum value was later achieved in an on-line manner 

through the RTO strategy developed by Golshan et al. [8].  

The results from the present study are reported in Table 3, 

where the optimum values corresponding to the proposed 

fuzzy RTO, crisp RTO, and the off-line study in [7] are 

compared. Interestingly, the SQP and HRO techniques 

have resulted in the same values for the setpoints, which 

suggests that a global optimum is found. However, it is 

important to note that no mathematical guarantee of global 

optimality can be given with gradient-based and stochastic 

techniques. Such a guarantee can be provided with a 

deterministic global optimization algorithm [19], which is 

not within the scope of this article. In terms of the computational 

expense, the case with the HRO method is expected to be 

less efficient than with the SQP technique. It takes about 

2.5 seconds for the HRO technique to find an optimum, 

whereas the SQP method requires only 0.2 second, that is 

12 times faster. The higher computational demand by the 

HRO method is a result of a random search scheme. 

From Table 3, the reduction in the operating cost  

by the fuzzy RTO is 10% compared to the crisp RTO, and 

40% compared to the base case value obtained by [6]. 

The constraint fuzzification results in a reactor level of 

61.7% instead of the crisp lower limit of 65% suggested 

by Ricker [7]. This means that economical operation of 

the process favors a lower reactor level. On the contrary, 

a slightly higher reactor pressure than the upper limit of 

2800 kPa [7] is found by the fuzzy RTO. This indicates 

that a higher reactor pressure yields a more economical operation. 

Note that the obtained reactor level and reactor pressure 

are still within their normal operating ranges defined  

by Downs & Vogel [6]. Another process variable that is 

noticeably affected by the fuzzification procedure is the 

compressor work, which is decreased from 277 kW [8,10] to 

271 kW in the present study. It is evident from Eq. (11) that 

the compressor work has a major effect on the operating cost. 

The cost functions versus time obtained during the 

fuzzy RTO and crisp RTO are illustrated in Fig. 3. The 

final steady state operating costs are those reported  

in Table 3. In both cases, the operating cost is seen to 

undergo large fluctuations before reaching its steady-state 
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Table 3: Comparison of the fuzzy optimization results with the base case values, crisp RTO, and off-line study in [7]. 

Fuzzy RTO by HRO 
and SQP 

Crisp RTO by HRO and SQP 
[8,10] 

Ricker’s [7] results Base case value [6] Decision variable 

61.70 65 65 75 Reactor level (%) 

42.48 50 50 50 Stripper Level (%) 

50.00 51.9 50 50 Separator Level (%) 

21.4 22.949 22.89 22.949 Product Flow (m3 h-1) 

2804.68 2799.9 2800 2705 Reactor Press.(kPa) 

124.34 123.3 122.9 120.4 Reactor Temp (˚C) 

271.22 277 278.9 341.43 Compress. Power (KW) 

21.83 21.8 21.83 13.823 B in Purge Flow (%) 

1437 1437.5 1437 1201 Recycle flow (kmol/h) 

0.381 0.56 0.58 0.83570 E in Product (%) 

102.91 114.2 114.31 170.6 Cost Function ($ h-1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Cost functions obtained by (a) crisp RTO, and (b) fuzzy RTO. 

 

value (Table 3). This is due to the setpoint changes 

resulting from successive executions of the RTO algorithm. 

The key process variables whose setpoints are 

determined using the fuzzy RTO are illustrated in Fig. 4.  

The steady-state values of these process variables are 

given in Table 3, and discussed earlier. 

It is critical for an optimization algorithm to satisfy 

key process constraints such as product quality. Fig. 5 depicts 

the product composition, G mol (%), during the execution 

of the fuzzy RTO. The G mol (%) satisfies the ±5% 

product variability described by Downs & Vogel [6]. 

CONCLUSIONS 

A real-time optimization algorithm incorporating fuzzy 

logic has been developed and implemented on the Tennessee 

Eastman benchmark process. The RTO builds upon the algorithm 

developed by Golshan et al. [8]. However, the constraints and 

objective function have been fuzzified in order to widen the 

search region while ensuring a feasible solution. The resulting 

optimization problem has been solved using a gradient-based 

technique (SQP) and also a heuristic search method (HRO). 

The conformity of the results from both methods suggests 

global optimality of the solution. Nevertheless, the HRO 
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Fig. 4: Key process variables whose setpoints are obtained by the fuzzy RTO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Variations of G mol (%) in the product stream. 

method is found to be computationally more demanding. The 

fuzzy RTO has been shown to improve the plant economics 

considerably as compared to the crisp RTO, while maintaining a 

safe operation and the desired product specification. 

 

Nomenclature 

Fi                               Molar flow of component i, kmol h-1 

Ci,cst                                      Cost of component i, $ kmol-1 

xi,j                         Mol fraction of component i in stream j 

Wcmp                                                Compressor power, W 

Fsteam                                   Stripper steam flowrate, kg h-1 

Ctot                                                      Operating cost, $ h-1 

u                                                                       Model input 

y                                                                     Model output 

X                                                             Decision variable 

z                                                                Aspiration level 

�                                                                   State variables 
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Appendix.  Fuzzification parameters 
 

Table A1: The D vector. 

Type of constraint Element index Description Value in the vector D 

Process consideration 1 Objective function aspiration level (z) 100 ($ h-1) 

(Inequality constrains) 2 Max. reactor pressure 2800 (kPa) 

 3 Min. reactor level 65 (%) 

 4 Max. reactor level 80 (%) 

 5 Max. reactor temperature 125 (°C) 

 6 Min. compressor power 277 (kW) 

 7 Min. E(%) in Product 0.56 (%) 

 8 Min. stripper level 40 (%) 

 9 Max. stripper level 80 (%) 

 10 Min. separator level 40 (%) 

 11 Max. separator level 80 (%) 

Nonnegative decision variables 12 Reactor level 0 

 13 Stripper level 0 

 14 Separator level 0 

 15 Product flow 0 

 16 Reactor pressure 0 

 17 Reactor temperature 0 

 18 Compressor power 0 

 19 B(%) in purge 0 

 20 Recycle flow 0 

 21 E(%) in Product 0 

Process considerations 22 Reactor material balance (negative margin) 0.01 

(Equality constrains) 23 Product flowrate (left margin) 22.03 (m3 h-1) 

 24 Reactor material balance (positive margin) 0.01 

 25 Product flowrate (right margin) 23.06 (m3 h-1) 
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Table A2: The P vector.  Any constraint violations beyond these margins make the corresponding membership function zero. 

Type of constraint Element index Description Acceptable violation 

Process consideration 1 Objective function 50 ($ h-1) 

(Inequality constrains) 2 Max. reactor pressure 30 (kPa) 

 3 Min. reactor level 15 (%) 

 4 Max. reactor level 2 (%) 

 5 Max. reactor temperature 1.25 (°C) 

 6 Min. compressor power 37 (kW) 

 7 Min. E(%) in Product 0.21 (%) 

 8 Min. stripper level 10 (%) 

 9 Max. stripper level 4 (%) 

 10 Min. separator level 10 (%) 

 11 Max. separator level 4 (%) 

Nonnegative decision variables 12 Reactor level 0 

 13 Stripper level 0 

 14 Separator level 0 

 15 Product flow 0 

 16 Reactor pressure 0 

 17 Reactor temperature 0 

 18 Compressor power 0 

 19 B(%) in purge 0 

 20 Recycle flow 0 

 21 E(%) in Product 0 

Process considerations 22 Reactor material balance (negative margin) 0.1 

(Equality constrains) 23 Reactor material balance (positive margin) 0.1 

 24 Product flowrate (max acceptable) 0.23 (m3 h-1) 

 25 Product flowrate (min acceptable) 2.3 (m3 h-1) 
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Table A3: Constraints used in fuzzification of the objective 

function. 

Constraint number Description di 

Inequality constraints   

1 Max. reactor pressure 0.011 

2 Min. reactor level 0.2 

3 Max. reactor level 0.025 

4 Max. reactor temperature 0.01 

5 Min. compressor power 0.05 

6 Min. E(%) in Product 0.15 

7 Min. stripper level 0.25 

8 Max. stripper level 0.05 

9 Min. separator level 0.25 

10 Max. separator level 0.05 

Equality constraints   

11 Reactor material balance 

12 Product flowrate 

 

	                                                              Model parameters 

�i                             Membership function of i-th fuzzy set 

�k                  Right margin of equality constraint violation 

�k                    Left margin of equality constraint violation 

�                                  Weight factor in objective function 
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