Effect of Synthesis Parameters on Phase Purity, Crystallinity and Particle Size of SAPO-34

Document Type : Research Note

Authors

School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, I.R. IRAN

Abstract

An account is presented on investigation of the effects of synthesis parameters, i.e., reaction sources, silica to alumina ratio, acid molar ratio and crystallization conditions on the crystallinity, morphology and particle size of SAPO-34. The synthesis conditions were designed to produce small particles with narrow size range. The prepared samples were characterized by XRD and SEM techniques in order to evaluate the crystallinity, morphology and particle size. The XRD pattern was used to evaluate the crystallinity and phase purity. The phase purity of some samples, including SAPO-18 was determined by DIFFaX analysis from XRD data. The results were shown that formation of SAPO-18 is enhanced by increasing the acid content in the primary mixture.lower Si/Al ratio in a primary mixture resulted in production of AlPO’s and SAPO-5 impurities.The type of template, silicon and aluminum source, acid concentration, agitation during crystallization, temperature and time of crystallization were found out as the significant parameters for controlling crystallinity and purity, particle size and morphology of the product.  

Keywords

Main Subjects


[2] Lok B.M., Messina C.A., Patton R.L., Gajek R.T., Cannan T.R., Flanigen E.M., Silicoaluminophosphate Molecular Sieves: Another New Class of Microporous Crystalline Inorganic Solids , J. Am. Chem. Soc., 106, p. 6092 (1984).
[3] Fujdala K.L., Tilley T.D., An Efficient, Single-Source Molecular Precursor to Silicoaluminophosphates,
J. Am. Chem. Soc.
, 123, p. 10133 (2001).
[4] Elangovan S.P., Ogura M., Zhang Y., Chino N., Okubo T., Silicoaluminophosphate Molecular Sieves as a Hydrocarbon Trap, Appl. Catal. B: Environ., 57, p. 31 (2005).
[5] R. Szostak, "Molecular Sieves: Principles of Synthesis and Identification",van Nostrand, New York, 1989).
[6] Zhang Y., Tokay B., Funke H.H., Falconer J.L., Noble R.D., Template Removal from SAPO-34 Crystals and Membranes, J. Membr. Sci., 363, p. 2935 (2010).
[7] Li S., Fan C.Q., High-Flux SAPO-34 for CO2/N2 Separation, Ind. Eng. Res., 49, p. 4399 (2010).
[8] Ye L., Cao F., Ying W., Effect of TEAOH/DEA Combination on SAPO-34's Synthesis and Catalytic Performance, J. Porous Mater.DOI 10.1007/s10934-010-9374-4, 18(2), p. 225 (2010).
[9] Yang H., Liu Z., Gao H., Xie Z., Synthesis and Catalytic Performance of Hierarchical SAPO-34 Monolith, J. Mater. Chem., 20, p. 3227 (2010).
[10] Nishiyama N., KawaguchiM., yY. Hirota, D. V. Vu, Egashira Y., Ueyama K., Size Control of SAPO-34 Crystals and Their Catalysis Lifetime in the Methanol-to-Olefin Reaction, App. Catal. A, 362, p. 193 (2009).
[11] Tosheva L., Valtchev V.P., Nanozeolites: Synthesis, Crystallization Mechanism, and Applications, Chem. Mater., 17, p. 2494 (2005).
[12] Heyden H.V., Mintova S., Bein T., Nanosized SAPO-34 Synthesized from Colloidal Solutions, Chem. ater., 20, p. 2956 (2008).
[13] Hirota Y., Murata K., Tanaka S., Nishiyama N., Egashira Y., Ueyama K., Dry Gel Conversion Synthesis of SAPO-34 Nanocrystals, Mater. Chem. Phys., 123, p. 507 (2010).
[14] Yao J., Wang H., Ringer S.P., Chan K., Zhang L., Xu N., Growth of SAPO-34 in Polymer Hydrogels Through Vapor-Phase Transport, Micropor. Mesopor. Mater., 85, p. 267 (2005).
[15] Lin S., Li J., Sharma R.P., Fabrication of SAPO-34 Crystalswith Different Morphologies by Microwave Heating, Top. Catal., 53, p. 1304 (2010).
[16] Chew T.L., Ahmad A.L., Bhatia S., Rapid Synthesis of Thin SAPO-34 Membranes Using Microwave Heating, J. Porous Mater. DOI: 10.1007/s10934-010-9385-1.
[17] Treacy M.M.J., Newsam J.M., Deem M.W., A General Recursion Method for Calculating Diffracted Intensities from Crystals Containing Planar Faults, Proc. Roy. Soc. Lond. A, 433, p. 499 (1991).
[18] Cullity B.D., "Elements of X-ray Diffraction", Addison Wesley Publishing Company,Massachusetts,USA, (1965).
[19] E.N. Coker, J.C. Jansen, H.G. Karge, J. Weitkamp, "Molecular Sieves- Science and Technology", 1, Springer, New York, (1998).
[20] Bergna H.E., Roberts W.O., "Colloidal Silica: Fundamentals and Applications", CRC Press, (2005).
[21] Vomscheid R., Briend M., Peltre M.J., Man P.P., Barthomeuf D., The Role of the Template in Directing the Si Distribution in SAPO Zeolites, J. Chem. Phys., 98, p. 9614 (1994).
[22] Lok B.M., Cannan T.R., Messia C.A., The Role of Organic Molecules in Molecular Sieve Synthesis, Zeolites, 3, p. 282 (1983).
[23] Li S., Falconer J.L., Noble R.D., SAPO-34 Membranes for CO2/CH4 Separations: Effect of Si/Al Ratio, Micropor. Mesopor. Mater., 110, p. 310 (2008).
[24] Liu G., Tian P., Li J., Zhang D., Zhou F., Liu Z., Synthesis, Characterization and Catalytic Properties of SAPO-34 Synthesized Using Diethylamine as a Template, Micropor. Mesopor. Mater., 111, p. 143 (2008).
[25] Cao G., Shah M.J., Synthesis of Aluminophosphates andSilicoaluminophosphates,U.S.Patent 7247287 B2, (2007).
[26] Treacy M.M.J., Higgins J.B., "Collection of Simulated XRD Powder Patterns for Zeolites", 5th Edition, Elsevier, (2007).
[27] Strohmaier K.G., Synthesis of Molecular Sieves of CHA FrameworkType,U.S.Patent 6835363 B1 (2004).
[28] Tan J., Liu Z., Bao X., Liu X., Han X., He C., Zhai R., Crystallization and Si Incorporation Mechanisms of SAPO-34, Micropor. Mesopor. Mater., 53, p. 97 (2002).