Manganese (III)-Bis(salicylaldehyde)-4-Methyl-1,2-Phenylenediimine (Mn-BSMP) as an Inexpensive N2O2 Type Schiff Base Catalyst for Oxidative Decarboxylation of Carboxylic Acids with (n-Bu4NIO4) in the Presence of Imidazol

Document Type: Research Article

Authors

Department of Chemistry, Faculty of Sciences, Yasouj University, P.O. box 75918-74831Yasouj, I.R. IRAN

Abstract

In this study, bis(salicylaldehyde)-4-methyl-1,2-phenylenediimine (BSMP) as a Schiff base ligand of N2O2-type and its Mn and Fe complex as M-BSMP catalyst were synthesized and characterized by UV-Vis, IR spectroscopy and elemental analysis. The efficiency of Fe- and Mn-BSMP catalysts was evaluated in the oxidative decarboxylation of arylacetic acids with tetra-butylammonium periodate (n-Bu4NIO4) in the presence of imidazol with the mole ratios of M-BSMP: imdazole: n-Bu4NIO4: carboxylic acid of 1:2:5:5, respectively in CH2Cl2. Using Mn-BSMP instead of Fe-BSMP makes the decarboxylation improved, leading 60-95% of corresponding carbonyl compounds as the sole products.

Keywords

Main Subjects


[1] Breslow R., Dong S.D., Biomimetic Reactions Catalyzed by Cyclodextrins and Their Derivatives, Chem. Rev. 98, p.1997 (1998).
[2] (a) Mohajer D., Karimipour G., Bagherzadeh M., Reactivity Studies of Biomimetic Catalytic Epoxidation of Alkenes with Tetrabutylammonium Periodate in the Presence of Various Manganese Porphyrins and Nitrogen Donors: Significant Axial Ligand п-Bonding Effects, New. J. Chem., 28, p. 740 (2004);
     (b) Meunier B., Metalloporphyrins as Versatile Catalysts for Oxidation Reactions and Oxidative DNA cleavage, Chem. Rev., 92, p. 1411 (1992);
    (c) Kimura T., Kanota N., Matsui K., Tanaka I., Tsuboi T., Takaguchi Y., Yomogita A., Wakahara T., Kuwahara S., Nagatsugi F. Akasaka,T., Preparation and Electrochemical and Optical Properties of Unsymmetrically Substituted Phthalocyanines with One or Two Trithiole Rings and Related Symmetric Derivatives, Inorg. Chem., 47, p. 3577 (2008).
[3] Doyle M.P., ForbesD.C., Recent Advances in Asymmetric Catalytic Metal Carbene Transformations, Chem. Rev., 98, p. 911 (1998).
[4] (a) Gomes, M. F. T.; Antunes, O. A. C., Oxidation of α- and β-pinene catalyzed by MnIII(Salen)Cl·H2O, Catal. Lett., 42, p. 213 (1996);
     (b) Gomes, M. F. T. Antunes, O.A. C., Oxidation of limonene catalyzed by MnIII(Salen)Cl.H2O, Catal. Lett., 38, p. 133 (1996.
[5] Karimipour G., Montazerozohoori M, Karami B., Efficient Biomimetic Decarboxylation of Diphenylacetic Acid by [Mn(TPP)X]n-Bu4NIO4 Catalytic Systems: Effect of Anionic Axial Ligands (X-), J. Chem. Res., 9, p. 605 (2006).
[6] Karimipour G., Karami B., Montazerozohori M., Zakavi S., Oxidative Decarboxylation of Carboxylic Acids with Tetrabutylammonium Periodate Catalyzed by Manganese (III) Meso-Tetraarylporphyrins: Effect of Metals, Meso-Substituents, and Anionic Axial Ligands, Chin. J. Catal.,28, p. 940 (2007).
[7] Montazerozohori M., Nasr-esfahani M., Akhlaghi P., Catalytic Oxidative Decarboxylation of Some Benzylcarboxylic Acid Derivative by a New Iron(III) Schiff Base Complex, Chin. J. Chem., p. 1007 (2009).
[8] Ortiz de Montellano P.R., Hydrocarbon Hydroxylation by Cytochrome P450 Enzymes, Chem. Rev., 110, p. 932 (2010).
[9] Agarwal R.K., Prasad S., Gahlot N., Synthesis Spectral and Thermal Properties of Some Penta-Coordinated Complexes of Oxovanadium(IV) Derived from Thiosemicarbazones of 4-Aminoantipyrine, Turk. J. Chem., 28, p. 691 (2004).
[10] Webster F.X., Silverstein R.M., “Spectrophotometer Identification of Organic Compounds”, 6th ed.,
John Wiley, New York, 87 (1992).
[11] Nakomoto K., “Infrared and Raman Spectroscopy of Inorganic and Coordination Compounds”, 3rd ed., Wiley Interscience,New York (1978).
[12] Seifert F., Ciszak E., Korotchkina L., Golbik R., Spinka M., Dominiak P., Sidhu S., Brauer J., Patel M.S., Tittmann K., Phosphorylation of Serine 264 Impedes Active Site Accessibility in the E1 Component of the Human Pyruvate Dehydrogenase Multienzyme Complex, Biochemistry, 46, p. 6277 (2007).
[13] Luo W., Yao X., Hong M., Large Structure Rearrangement of Colicin Ia Channel Domain after Membrane Binding from 2D 13C Spin Diffusion NMR, J. Am. Chem. Soc., 127, p. 6402 (2005).
[14](a) Komuro M., Nagatsu Y., Higuchi T., Hirobe M., Oxidative Decarboxylation of Carboxylic Acids by Iron Porphyrin - Iodosylbenzene System, Tetrahedron Lett., 33, p. 4949 (1992);
      (b) Komuro M., Higuchi T., Hirobe M., Application of Chemical Cytochrome P-450 Model Systems
to Studies on Drug Metabolism. VIII. Novel Metabolism of Carboxylic Acids via Oxidative Decarboxylation, Bioorg. Med. Chem., 3, p. 55 (1995).
[15](a) Moghadam M., Tangestaninejad S., Mirkhani V., Mohammadpoor-baltorkI., Sirjanian N., Parand P.,Moghadam M.,Tangestaninejad S., Mirkhani V., Mohammadpoor-Baltork I., Sirjanian N., Parand S., Polystyrene-Bound Mn(T4PyP): A Highly Efficient and Reusable Catalyst for Biomimetic Oxidative Decarboxylation of Carboxylic Acids with Sodium Periodate , Bioorg. Med. Chem., 17, p. 3394(2009);
     (b) Mirkhani V., Tangestaninejad S., Moghadam M., Moghbel M., Rapid and Efficient Oxidative Decarboxylation o Carboxylic Acid with Sodium Periodate Catalyzedvby Manganese (III) Schiff base Complexes, Bioorg. Med. Chem., 12, p. 903 (2004);
      (c) Mirkhani V., Tangestaninejad S., Moghadam M., Karami Z., Efficient Oxidative Decarboxylation of Carboxylic Acids with sodium Periodate Catalysted by Supported Manganese(Ш) Porphyrin, Bioorg. Med. Chem. Lett., 13, p. 3433 (2003);
    (d) Bond J.Q., Martin A.D., West R.M., Dumesic J.A., γ-Valerolactone Ring-Opening and Decarboxylation over SiO2/Al2O3 in the Presence of Water, Langmuir, 26, p.16291 (2010).
[16] OhnoT., Suzuki N., Dokoh T., Urano Y., Kikuchi K., Hirobe M., Higuchi T., Nagano T., Remarkable Axial Thiolate Lligand Effect on the Oxidation of Hydrocarbons by Active Intermediate of Iron Porphyrin and Cytochrome P450, J. Inorg. Biochem.,82, p. 123 and references cited therein (2000).
[17] Archer R.D., Chen H., Synthesis, Characterization, and Luminescence of Europium(III) Schiff Base Complexes, Inorg. Chem., 37, p. 2089 (1998).